paddle_inference_api.h 5.0 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file contains the definition of a simple Inference API for Paddle.
 *
 * ATTENTION: It requires some C++ features, for lower version C++ or C, we
 * might release another API.
 */

#pragma once

#include <cassert>
#include <memory>
#include <string>
#include <vector>
28
#include "common/type_define.h"
N
nhzlx 已提交
29 30 31

namespace paddle_mobile {

Z
zhangyang0701 已提交
32
#ifdef PADDLE_MOBILE_FPGA
33

Z
zhangyang0701 已提交
34 35
namespace fpga {
int open_device();
36
int close_device();
37 38
void* fpga_malloc(size_t size);
void fpga_free(void* ptr);
Z
zhangyang0701 已提交
39 40 41 42

//  Usage:
//  auto version = fpga::paddle_mobile_version();
//  std::cout << "0X0" << std::hex << version << std::endl;
43
uint32_t paddle_mobile_version();
44
}  // namespace fpga
Z
zhangyang0701 已提交
45 46
#endif

N
nhzlx 已提交
47 48
enum PaddleDType {
  FLOAT32,
49
  FLOAT16,
N
nhzlx 已提交
50
  INT64,
51 52 53 54 55 56
  INT8,
};

enum LayoutType {
  LAYOUT_CHW = 1,
  LAYOUT_HWC = 0,
N
nhzlx 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69
};

class PaddleBuf {
 public:
  PaddleBuf() = default;
  PaddleBuf(PaddleBuf&& other);
  // Copy only available when memory is managed externally.
  explicit PaddleBuf(const PaddleBuf&);
  PaddleBuf& operator=(const PaddleBuf&);
  // Do not own the memory.
  PaddleBuf(void* data, size_t length)
      : data_(data), length_(length), memory_owned_{false} {}
  // Own memory.
L
liuruilong 已提交
70
  explicit PaddleBuf(size_t length)
N
nhzlx 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
      : data_(new char[length]), length_(length), memory_owned_(true) {}
  // Resize to `length` bytes.
  void Resize(size_t length);
  // Reset to external memory.
  void Reset(void* data, size_t length);
  bool empty() const { return length_ == 0; }
  void* data() const { return data_; }
  size_t length() const { return length_; }

  ~PaddleBuf() { Free(); }

 private:
  void Free();
  void* data_{nullptr};  // pointer to the data memory.
  size_t length_{0};     // number of memory bytes.
  bool memory_owned_{true};
};

struct PaddleTensor {
  PaddleTensor() = default;
  std::string name;  // variable name.
  std::vector<int> shape;
93
  std::vector<int> lod;
N
nhzlx 已提交
94 95
  PaddleBuf data;  // blob of data.
  PaddleDType dtype;
96
  kTypeId_t dtypeid;
97
  LayoutType layout;
N
nhzlx 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
};

enum class PaddleEngineKind {
  kPaddleMobile,
  // TODO(Superjomn) support following engines latter.
  // kTensorRT,           // Use TensorRT for inference.
  // kAutoMixedAnakin,    // Automatically mix Fluid with Anakin.
  // kAutoMixedTensorRT,  // Automatically mix Fluid with TensorRT.
};

/*
 * A simple Inference API for Paddle. Currently this API can be used by
 * non-sequence scenerios.
 */
class PaddlePredictor {
 public:
  struct Config;
  PaddlePredictor(const PaddlePredictor&) = delete;
  PaddlePredictor& operator=(const PaddlePredictor&) = delete;

  // Predict an record.
  // The caller should be responsible for allocating and releasing the memory of
  // `inputs`. `inputs` should be available until Run returns. Caller should be
  // responsible for the output tensor's buffer, either allocated or passed from
  // outside.
Z
zhangyang0701 已提交
123

N
nhzlx 已提交
124 125 126 127 128 129 130 131 132
  virtual bool Run(const std::vector<PaddleTensor>& inputs,
                   std::vector<PaddleTensor>* output_data,
                   int batch_size = -1) = 0;
  // Destroy the Predictor.
  virtual ~PaddlePredictor() = default;

  // The common configs for all the predictors.
  struct Config {
    std::string model_dir;  // path to the model directory.
133 134
    std::string prog_file;
    std::string param_file;
N
nhzlx 已提交
135
  };
Z
zhangyang0701 已提交
136
#ifdef PADDLE_MOBILE_FPGA
137 138 139
  virtual void Predict_From_To(int start, int end) = 0;
  virtual void FeedPaddleTensors(const std::vector<PaddleTensor>& inputs) = 0;
  virtual void FetchPaddleTensors(std::vector<PaddleTensor>* outputs) = 0;
J
jameswu2014 已提交
140
  virtual void FetchPaddleTensors(PaddleTensor* outputs, int id) = 0;
141 142
  virtual void GetPaddleTensor(const std::string& name,
                               PaddleTensor* output) = 0;
Z
zhangyang0701 已提交
143
#endif
L
liuruilong 已提交
144 145 146

 protected:
  PaddlePredictor() = default;
N
nhzlx 已提交
147 148
};

xiebaiyuan's avatar
xiebaiyuan 已提交
149 150 151 152 153 154 155 156
struct PaddleModelMemoryPack {
  bool from_memory = false;
  size_t model_size = 0;
  uint8_t* model_buf = nullptr;
  size_t combined_params_size = 0;
  uint8_t* combined_params_buf = nullptr;
};

N
nhzlx 已提交
157 158
struct PaddleMobileConfig : public PaddlePredictor::Config {
  enum Precision { FP32 = 0 };
L
liuruilong 已提交
159
  enum Device { kCPU = 0, kFPGA = 1, kGPU_MALI = 2, kGPU_CL = 3 };
N
nhzlx 已提交
160 161 162 163 164 165 166

  enum Precision precision;
  enum Device device;

  int batch_size = 1;
  bool optimize = true;
  bool quantification = false;
167
  bool lod_mode = false;
N
nhzlx 已提交
168
  int thread_num = 1;
Y
yangfei 已提交
169
  std::string cl_path;
xiebaiyuan's avatar
xiebaiyuan 已提交
170
  struct PaddleModelMemoryPack memory_pack;
N
nhzlx 已提交
171 172 173 174 175 176 177 178
};

// A factory to help create different predictors.
template <typename ConfigT,
          PaddleEngineKind engine = PaddleEngineKind::kPaddleMobile>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);

}  // namespace paddle_mobile