paddle_inference_api.h 5.0 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file contains the definition of a simple Inference API for Paddle.
 *
 * ATTENTION: It requires some C++ features, for lower version C++ or C, we
 * might release another API.
 */

#pragma once

#include <cassert>
#include <memory>
#include <string>
27
#include <typeindex>
N
nhzlx 已提交
28 29 30 31
#include <vector>

namespace paddle_mobile {

Z
zhangyang0701 已提交
32 33 34
#ifdef PADDLE_MOBILE_FPGA
namespace fpga {
int open_device();
35 36 37
void* fpga_malloc(size_t size);
void fpga_free(void* ptr);
}  // namespace fpga
Z
zhangyang0701 已提交
38 39
#endif

N
nhzlx 已提交
40 41
enum PaddleDType {
  FLOAT32,
42
  FLOAT16,
N
nhzlx 已提交
43
  INT64,
44 45 46 47 48 49
  INT8,
};

enum LayoutType {
  LAYOUT_CHW = 1,
  LAYOUT_HWC = 0,
N
nhzlx 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62
};

class PaddleBuf {
 public:
  PaddleBuf() = default;
  PaddleBuf(PaddleBuf&& other);
  // Copy only available when memory is managed externally.
  explicit PaddleBuf(const PaddleBuf&);
  PaddleBuf& operator=(const PaddleBuf&);
  // Do not own the memory.
  PaddleBuf(void* data, size_t length)
      : data_(data), length_(length), memory_owned_{false} {}
  // Own memory.
L
liuruilong 已提交
63
  explicit PaddleBuf(size_t length)
N
nhzlx 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
      : data_(new char[length]), length_(length), memory_owned_(true) {}
  // Resize to `length` bytes.
  void Resize(size_t length);
  // Reset to external memory.
  void Reset(void* data, size_t length);
  bool empty() const { return length_ == 0; }
  void* data() const { return data_; }
  size_t length() const { return length_; }

  ~PaddleBuf() { Free(); }

 private:
  void Free();
  void* data_{nullptr};  // pointer to the data memory.
  size_t length_{0};     // number of memory bytes.
  bool memory_owned_{true};
};

struct PaddleTensor {
  PaddleTensor() = default;
  std::string name;  // variable name.
  std::vector<int> shape;
  // TODO(Superjomn) for LoD support, add a vector<vector<int>> field if needed.
  PaddleBuf data;  // blob of data.
  PaddleDType dtype;
89 90
  std::type_index dtypeid = typeid(float);
  LayoutType layout;
N
nhzlx 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
};

enum class PaddleEngineKind {
  kPaddleMobile,
  // TODO(Superjomn) support following engines latter.
  // kTensorRT,           // Use TensorRT for inference.
  // kAutoMixedAnakin,    // Automatically mix Fluid with Anakin.
  // kAutoMixedTensorRT,  // Automatically mix Fluid with TensorRT.
};

/*
 * A simple Inference API for Paddle. Currently this API can be used by
 * non-sequence scenerios.
 */
class PaddlePredictor {
 public:
  struct Config;
  PaddlePredictor(const PaddlePredictor&) = delete;
  PaddlePredictor& operator=(const PaddlePredictor&) = delete;

  // Predict an record.
  // The caller should be responsible for allocating and releasing the memory of
  // `inputs`. `inputs` should be available until Run returns. Caller should be
  // responsible for the output tensor's buffer, either allocated or passed from
  // outside.
  virtual bool Run(const std::vector<PaddleTensor>& inputs,
                   std::vector<PaddleTensor>* output_data,
                   int batch_size = -1) = 0;
  // Destroy the Predictor.
  virtual ~PaddlePredictor() = default;

  // The common configs for all the predictors.
  struct Config {
    std::string model_dir;  // path to the model directory.
125 126
    std::string prog_file;
    std::string param_file;
N
nhzlx 已提交
127
  };
Z
zhangyang0701 已提交
128
#ifdef PADDLE_MOBILE_FPGA
129 130
  virtual void FeedData(const std::vector<void*>& inputs) = 0;
  virtual void GetResults(std::vector<void*>* outputs) = 0;
131 132 133
  virtual void Predict_From_To(int start, int end) = 0;
  virtual void FeedPaddleTensors(const std::vector<PaddleTensor>& inputs) = 0;
  virtual void FetchPaddleTensors(std::vector<PaddleTensor>* outputs) = 0;
134 135
  virtual void GetPaddleTensor(const std::string& name,
                               PaddleTensor* output) = 0;
Z
zhangyang0701 已提交
136
#endif
L
liuruilong 已提交
137 138 139

 protected:
  PaddlePredictor() = default;
N
nhzlx 已提交
140 141
};

xiebaiyuan's avatar
xiebaiyuan 已提交
142 143 144 145 146 147 148 149
struct PaddleModelMemoryPack {
  bool from_memory = false;
  size_t model_size = 0;
  uint8_t* model_buf = nullptr;
  size_t combined_params_size = 0;
  uint8_t* combined_params_buf = nullptr;
};

N
nhzlx 已提交
150 151
struct PaddleMobileConfig : public PaddlePredictor::Config {
  enum Precision { FP32 = 0 };
L
liuruilong 已提交
152
  enum Device { kCPU = 0, kFPGA = 1, kGPU_MALI = 2, kGPU_CL = 3 };
N
nhzlx 已提交
153 154 155 156 157 158 159

  enum Precision precision;
  enum Device device;

  int batch_size = 1;
  bool optimize = true;
  bool quantification = false;
160
  bool lod_mode = false;
N
nhzlx 已提交
161
  int thread_num = 1;
Y
yangfei 已提交
162
  std::string cl_path;
xiebaiyuan's avatar
xiebaiyuan 已提交
163
  struct PaddleModelMemoryPack memory_pack;
N
nhzlx 已提交
164 165 166 167 168 169 170 171
};

// A factory to help create different predictors.
template <typename ConfigT,
          PaddleEngineKind engine = PaddleEngineKind::kPaddleMobile>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);

}  // namespace paddle_mobile