depthwise_conv2d_buffer_compute.cc 5.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
16

17
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
18 19
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
20
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class DepthwiseConv2dCompute
    : public KernelLite<TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
 public:
  using param_t = operators::ConvParam;

34 35 36 37
  std::string doc() const override {
    return "DepthwiseConv2d using cl::Buffer, kFloat";
  }

Y
Yan Chunwei 已提交
38 39 40 41
  void PrepareForRun() override {
    const auto& param = *param_.get_mutable<param_t>();
    if (param.fuse_relu) {
      build_options_ += " -DRELU";
42 43 44
    } else if (param.activation_param.active_type ==
               lite_api::ActivationType::kRelu6) {
      build_options_ += " -DRELU6";
Y
Yan Chunwei 已提交
45 46
    }
    auto& context = ctx_->As<OpenCLContext>();
47 48 49 50
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "buffer/depthwise_conv2d_kernel.cl",
                                    build_options_,
                                    time_stamp_);
Y
Yan Chunwei 已提交
51 52 53 54 55 56 57
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    auto x_dims = param.x->dims();
    auto filter_dims = param.filter->dims();
    auto output_dims = param.output->dims();
H
HappyAngel 已提交
58
    auto paddings = *param.paddings;
Y
Yan Chunwei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
    auto strides = param.strides;

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    auto* input_buf = param.x->data<float, cl::Buffer>();
    auto* filter_buf = param.filter->data<float, cl::Buffer>();
    auto* bias_buf = param.bias == nullptr
                         ? static_cast<cl::Buffer*>(nullptr)
                         : param.bias->data<float, cl::Buffer>();
    auto* output_buf =
        param.output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));

    STL::stringstream kernel_key;
72
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
Y
Yan Chunwei 已提交
73 74 75 76 77
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    cl_int status;
    auto numel = output_dims.production();
    int arg_idx = 0;
78
    status = kernel->setArg(arg_idx, static_cast<const int>(numel));
Y
Yan Chunwei 已提交
79
    CL_CHECK_FATAL(status);
80
    status = kernel->setArg(++arg_idx, *input_buf);
Y
Yan Chunwei 已提交
81
    CL_CHECK_FATAL(status);
82
    status = kernel->setArg(++arg_idx, static_cast<const int>(x_dims[2]));
Y
Yan Chunwei 已提交
83
    CL_CHECK_FATAL(status);
84
    status = kernel->setArg(++arg_idx, static_cast<const int>(x_dims[3]));
Y
Yan Chunwei 已提交
85
    CL_CHECK_FATAL(status);
86
    status = kernel->setArg(++arg_idx, static_cast<const int>(output_dims[1]));
Y
Yan Chunwei 已提交
87
    CL_CHECK_FATAL(status);
88
    status = kernel->setArg(++arg_idx, static_cast<const int>(output_dims[2]));
Y
Yan Chunwei 已提交
89
    CL_CHECK_FATAL(status);
90
    status = kernel->setArg(++arg_idx, static_cast<const int>(output_dims[3]));
Y
Yan Chunwei 已提交
91
    CL_CHECK_FATAL(status);
92
    status = kernel->setArg(++arg_idx, static_cast<const int>(filter_dims[2]));
Y
Yan Chunwei 已提交
93
    CL_CHECK_FATAL(status);
94
    status = kernel->setArg(++arg_idx, static_cast<const int>(filter_dims[3]));
Y
Yan Chunwei 已提交
95
    CL_CHECK_FATAL(status);
96
    status = kernel->setArg(++arg_idx, static_cast<const int>(strides[0]));
Y
Yan Chunwei 已提交
97
    CL_CHECK_FATAL(status);
98
    status = kernel->setArg(++arg_idx, static_cast<const int>(strides[1]));
Y
Yan Chunwei 已提交
99
    CL_CHECK_FATAL(status);
100
    status = kernel->setArg(++arg_idx, static_cast<const int>(paddings[0]));
Y
Yan Chunwei 已提交
101
    CL_CHECK_FATAL(status);
102
    status = kernel->setArg(++arg_idx, static_cast<const int>(paddings[1]));
Y
Yan Chunwei 已提交
103
    CL_CHECK_FATAL(status);
104
    status = kernel->setArg(++arg_idx, *output_buf);
Y
Yan Chunwei 已提交
105
    CL_CHECK_FATAL(status);
106
    status = kernel->setArg(++arg_idx, *filter_buf);
Y
Yan Chunwei 已提交
107
    CL_CHECK_FATAL(status);
108
    status = kernel->setArg(++arg_idx, *bias_buf);
Y
Yan Chunwei 已提交
109 110 111
    CL_CHECK_FATAL(status);
    auto global_work_size = cl::NDRange(static_cast<size_t>(numel));
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
112
        *kernel.get(),
Y
Yan Chunwei 已提交
113 114 115 116 117 118 119 120 121 122
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(output_buf, event_);
  }

 private:
123
  std::string kernel_func_name_{"depthwise_conv2d"};
124
  std::string build_options_{"-DCL_DTYPE_float"};
125
  std::string time_stamp_{GetTimeStamp()};
Y
Yan Chunwei 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(depthwise_conv2d,
                     kOpenCL,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::opencl::DepthwiseConv2dCompute,
                     def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .Finalize();