// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/replace_stl/stream.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class DepthwiseConv2dCompute : public KernelLite { public: using param_t = operators::ConvParam; std::string doc() const override { return "DepthwiseConv2d using cl::Buffer, kFloat"; } void PrepareForRun() override { const auto& param = *param_.get_mutable(); if (param.fuse_relu) { build_options_ += " -DRELU"; } else if (param.activation_param.active_type == lite_api::ActivationType::kRelu6) { build_options_ += " -DRELU6"; } auto& context = ctx_->As(); context.cl_context()->AddKernel(kernel_func_name_, "buffer/depthwise_conv2d_kernel.cl", build_options_, time_stamp_); } void Run() override { const auto& param = *param_.get_mutable(); auto x_dims = param.x->dims(); auto filter_dims = param.filter->dims(); auto output_dims = param.output->dims(); auto paddings = *param.paddings; auto strides = param.strides; auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); auto* input_buf = param.x->data(); auto* filter_buf = param.filter->data(); auto* bias_buf = param.bias == nullptr ? static_cast(nullptr) : param.bias->data(); auto* output_buf = param.output->mutable_data(TARGET(kOpenCL)); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_ << time_stamp_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); cl_int status; auto numel = output_dims.production(); int arg_idx = 0; status = kernel->setArg(arg_idx, static_cast(numel)); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, *input_buf); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, static_cast(x_dims[2])); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, static_cast(x_dims[3])); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, static_cast(output_dims[1])); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, static_cast(output_dims[2])); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, static_cast(output_dims[3])); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, static_cast(filter_dims[2])); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, static_cast(filter_dims[3])); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, static_cast(strides[0])); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, static_cast(strides[1])); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, static_cast(paddings[0])); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, static_cast(paddings[1])); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, *output_buf); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, *filter_buf); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, *bias_buf); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange(static_cast(numel)); status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( *kernel.get(), cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(output_buf, event_); } private: std::string kernel_func_name_{"depthwise_conv2d"}; std::string build_options_{"-DCL_DTYPE_float"}; std::string time_stamp_{GetTimeStamp()}; std::shared_ptr event_{new cl::Event}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(depthwise_conv2d, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::DepthwiseConv2dCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .Finalize();