// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/api/paddle_place.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/core/target_wrapper.h" #include "lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace fpga { using float16 = zynqmp::float16; void CopyFromHostSync(void* target, const void* source, size_t size) { TargetWrapper::MemcpySync( target, source, size, IoDirection::HtoD); } void CopyToHostSync(void* target, const void* source, size_t size) { TargetWrapper::MemcpySync( target, source, size, IoDirection::DtoH); } /* * This kernel copies a tensor from host to FPGA space. */ class IoCopyHostToFpgaCompute : public KernelLite { public: void Run() override { auto& param = Param(); CHECK(param.x->target() == TARGET(kHost) || param.x->target() == TARGET(kFPGA)); // param.y->CopyDataFrom(*param.x); param.y->mutable_data(); if (param.x->ZynqTensor()->aligned() && param.x->ZynqTensor()->shape().shouldAlign()) { zynqmp::Tensor tempTensor; tempTensor.mutableData(zynqmp::FP16, param.x->ZynqTensor()->shape()); tempTensor.copyFrom(param.x->ZynqTensor()); // tempTensor.saveToFile("tempTensor", true); tempTensor.setAligned(true); tempTensor.unalignImage(); // tempTensor.saveToFile("unaligned", true); param.y->ZynqTensor()->copyFrom(&tempTensor); } else { param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor()); } param.y->ZynqTensor()->invalidate(); param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor()); auto out_lod = param.y->mutable_lod(); *out_lod = param.x->lod(); } std::unique_ptr GetTypeInferHandler() override { std::unique_ptr res(new type_infer_handler_t); *res = [](const std::map& inputs, const std::string& out) -> const Type* { CHECK(!inputs.empty()); auto* type = inputs.at("Input"); CHECK(type->target() == TARGET(kHost)); auto out_place = type->place(); out_place.target = TARGET(kFPGA); auto* out_type = Type::Get(type->id(), out_place.target, out_place.precision, out_place.layout, out_place.device); return out_type; }; return res; } std::string doc() const override { return "Copy IO from HOST to FPGA"; } }; /* * This kernel copies a tensor from FPGA to host space. */ class IoCopyFpgaToHostCompute : public KernelLite { public: void Run() override { // std::cout << "IoCopyFpgaToHostCompute \n"; auto& param = Param(); CHECK(param.x->target() == TARGET(kHost) || param.x->target() == TARGET(kFPGA)); // std::cout << "before CopyDataFrom \n"; param.y->mutable_data(); param.y->ZynqTensor()->setDataType(zynqmp::FP32); param.x->ZynqTensor()->syncToDevice(); if (param.x->ZynqTensor()->aligned() && param.x->ZynqTensor()->shape().shouldAlign()) { zynqmp::Tensor tempTensor; tempTensor.mutableData(zynqmp::FP16, param.x->ZynqTensor()->shape()); tempTensor.copyFrom(param.x->ZynqTensor()); // tempTensor.saveToFile("tempTensor", true); tempTensor.setAligned(true); tempTensor.unalignImage(); // tempTensor.saveToFile("unaligned", true); param.y->ZynqTensor()->copyFrom(&tempTensor); } else { param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor()); } param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor()); param.y->ZynqTensor()->flush(); auto out_lod = param.y->mutable_lod(); *out_lod = param.x->lod(); } std::string doc() const override { return "Copy IO from FPGA to HOST"; } }; } // namespace fpga } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(io_copy, kFPGA, kAny, kAny, paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute, host_to_device) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny))}) .Finalize(); REGISTER_LITE_KERNEL(io_copy, kFPGA, kAny, kAny, paddle::lite::kernels::fpga::IoCopyFpgaToHostCompute, device_to_host) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat), DATALAYOUT(kNHWC))}) .Finalize(); REGISTER_LITE_KERNEL(io_copy_once, kFPGA, kAny, kAny, paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute, host_to_device_once) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny))}) .Finalize(); REGISTER_LITE_KERNEL(io_copy_once, kFPGA, kAny, kAny, paddle::lite::kernels::fpga::IoCopyFpgaToHostCompute, device_to_host_once) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny))}) .Finalize();