reshape_op.cc 6.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/reshape_op.h"
#include "lite/core/op_registry.h"
17
#include "lite/core/tensor.h"
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

namespace paddle {
namespace lite {
namespace operators {

bool ReshapeOp::CheckShape() const {
  CHECK_OR_FALSE(param_.x);
  CHECK_OR_FALSE(param_.output);
  CHECK_OR_FALSE(!param_.shape.empty());
  return true;
}

bool ReshapeOp::InferShape() const {
  auto x_dims = param_.x->dims();
  auto output_dims = ValidateShape(param_.shape, x_dims);
  param_.output->Resize(output_dims);
  auto out_lod = param_.output->mutable_lod();
  *out_lod = param_.x->lod();
  return true;
}

bool ReshapeOp::AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) {
  auto x_var = scope->FindVar(opdesc.Input("X").front());
  auto output_var = scope->FindVar(opdesc.Output("Out").front());
  CHECK(x_var);
  CHECK(output_var);
  param_.x = const_cast<lite::Tensor *>(&(x_var->Get<lite::Tensor>()));
  param_.output = output_var->GetMutable<lite::Tensor>();
  std::vector<std::string> input_arg_names = opdesc.InputArgumentNames();
  if (opdesc.HasAttr("inplace")) {
    param_.inplace = opdesc.GetAttr<bool>("inplace");
  }
  CHECK(param_.x) << "Input(X) of ReshapeOp should not be null.";
  CHECK(param_.output) << "Output(Out) of ReshapeOp should not be null.";
52 53 54 55 56 57 58 59 60 61 62

  if (opdesc.HasInput("ShapeTensor") &&
      opdesc.Input("ShapeTensor").size() > 0) {
    auto inputs = opdesc.Input("ShapeTensor");
    for (auto var : inputs) {
      lite::Tensor *datatensor =
          scope->FindVar(var)->GetMutable<lite::Tensor>();
      param_.shape.push_back(datatensor->mutable_data<int>()[0]);
    }
    const std::vector<int> shape_vector = param_.shape;
    lite::Tensor *shape_tensor = new lite::Tensor;
63

64
    shape_tensor->Resize({static_cast<int64_t>(shape_vector.size())});
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    int *data_shape = shape_tensor->mutable_data<int>();
    for (int i = 0; i < shape_vector.size(); i++) {
      data_shape[i] = shape_vector[i];
    }
    param_.actual_shape = shape_tensor;
    return true;
  } else if (opdesc.HasInput("Shape") && opdesc.Input("Shape").size() > 0) {
    auto actual_shape_var = scope->FindVar(opdesc.Input("Shape").front());
    if (actual_shape_var != nullptr) {
      param_.actual_shape =
          const_cast<lite::Tensor *>(&(actual_shape_var->Get<lite::Tensor>()));
      int length = param_.actual_shape->dims().production();
      int *shape_list = actual_shape_var->GetMutable<int>();
      param_.shape.assign(shape_list, shape_list + length);
    }
    return true;
  } else {
    param_.shape = opdesc.GetAttr<std::vector<int>>("shape");
    CHECK(!param_.shape.empty())
        << "The shape information must be set by Attr(shape).";
    const std::vector<int> shape_vector = param_.shape;
    lite::Tensor *shape_tensor = new lite::Tensor;
87

88
    shape_tensor->Resize({static_cast<int64_t>(shape_vector.size())});
89 90 91 92 93 94
    int *data_shape = shape_tensor->mutable_data<int>();
    for (int i = 0; i < shape_vector.size(); i++) {
      data_shape[i] = shape_vector[i];
    }
    param_.actual_shape = shape_tensor;
  }
Y
Yan Chunwei 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  return true;
}

bool Reshape2Op::CheckShape() const {
  ReshapeOp::CheckShape();
  CHECK_OR_FALSE(param_.xshape);
  return true;
}

bool Reshape2Op::InferShape() const {
  ReshapeOp::InferShape();
  auto x_dims = param_.x->dims();
  std::vector<DDim::value_type> xshape_dims(x_dims.size() + 1, 1);
  for (size_t i = 0; i < x_dims.size(); i++) {
    xshape_dims[i + 1] = x_dims[i];
  }
111
  param_.xshape->Resize(xshape_dims);
Y
Yan Chunwei 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124
  return true;
}

bool Reshape2Op::AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) {
  ReshapeOp::AttachImpl(opdesc, scope);
  auto xshape_var = scope->FindVar(opdesc.Output("XShape").front());
  CHECK(xshape_var);
  param_.xshape = xshape_var->GetMutable<lite::Tensor>();
  CHECK(param_.xshape) << "Output(XShape) of ReshapeOp should not be null.";
  return true;
}

DDim ValidateShape(const std::vector<int> &shape, const DDim &input_dims) {
125
  const lite::DDim::value_type input_size = input_dims.production();
Y
Yan Chunwei 已提交
126
  auto input_shape = input_dims.Vectorize();
127 128 129 130
  bool all_positive = std::all_of(
      input_shape.cbegin(), input_shape.cend(), [](lite::DDim::value_type i) {
        return i > 0;
      });
Y
Yan Chunwei 已提交
131 132 133 134 135
  // only one dimension can be set to -1, whose size will be automatically
  // infered.
  const int unk_dim_val = -1;
  const int copy_dim_val = 0;

136 137
  std::vector<lite::DDim::value_type> output_shape(shape.size(), 0);
  lite::DDim::value_type capacity = 1;
Y
Yan Chunwei 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  int unk_dim_idx = -1;
  for (size_t i = 0; i < shape.size(); ++i) {
    if (shape[i] == unk_dim_val) {
      CHECK_EQ(unk_dim_idx, -1)
          << "Only one input dimension of Attr(shape) can be unknown.";
      unk_dim_idx = i;
    } else if (shape[i] == copy_dim_val) {
      CHECK_LT(static_cast<int>(i), input_shape.size())
          << "The index of dimension to copy from input shape must be less "
             "than the size of input shape.";
    } else {
      CHECK_GT(shape[i], 0) << "Each input dimension of Attr(shape) must not "
                               "be negtive except one unknown dimension.";
    }

153 154 155 156
    capacity *= (shape[i] ? static_cast<lite::DDim::value_type>(shape[i])
                          : input_shape[i]);
    output_shape[i] = (shape[i] ? static_cast<lite::DDim::value_type>(shape[i])
                                : input_shape[i]);
Y
Yan Chunwei 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
  }

  if (unk_dim_idx != -1) {
    if (all_positive) {
      // input_size < 0 and is un-determinate in compile time, skip the check,
      // for example, input_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
      // capacity = -24, input_size = -8, output_shape[0] = 0
      // the following check will fail.
      output_shape[unk_dim_idx] = -input_size / capacity;
      CHECK_EQ(output_shape[unk_dim_idx] * capacity, -input_size)
          << "Invalid shape is given.";
    } else {
      output_shape[unk_dim_idx] = -1;
    }
  } else {
    CHECK_EQ(capacity, input_size) << "Invalid shape is given.";
  }
174
  return lite::DDim(output_shape);
Y
Yan Chunwei 已提交
175 176 177 178 179 180 181 182
}

}  // namespace operators
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_OP(reshape, paddle::lite::operators::ReshapeOp);
REGISTER_LITE_OP(reshape2, paddle::lite::operators::Reshape2Op);