reshape_op.cc 5.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/reshape_op.h"
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace operators {

bool ReshapeOp::CheckShape() const {
  CHECK_OR_FALSE(param_.x);
  CHECK_OR_FALSE(param_.output);
  CHECK_OR_FALSE(!param_.shape.empty());
  return true;
}

bool ReshapeOp::InferShape() const {
  auto x_dims = param_.x->dims();
  auto output_dims = ValidateShape(param_.shape, x_dims);
  param_.output->Resize(output_dims);
  auto out_lod = param_.output->mutable_lod();
  *out_lod = param_.x->lod();
  return true;
}

bool ReshapeOp::AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) {
  auto x_var = scope->FindVar(opdesc.Input("X").front());
  auto output_var = scope->FindVar(opdesc.Output("Out").front());
  CHECK(x_var);
  CHECK(output_var);
  param_.x = const_cast<lite::Tensor *>(&(x_var->Get<lite::Tensor>()));
  param_.output = output_var->GetMutable<lite::Tensor>();
  std::vector<std::string> input_arg_names = opdesc.InputArgumentNames();
  if (std::find(input_arg_names.begin(), input_arg_names.end(), "Shape") !=
      input_arg_names.end()) {
    if (opdesc.Input("Shape").size() > 0) {
      auto actual_shape_var = scope->FindVar(opdesc.Input("Shape").front());
      if (actual_shape_var != nullptr) {
        param_.actual_shape = const_cast<lite::Tensor *>(
            &(actual_shape_var->Get<lite::Tensor>()));
      }
    }
  }
  param_.shape = (opdesc.GetAttr<std::vector<int>>("shape"));
  if (opdesc.HasAttr("inplace")) {
    param_.inplace = opdesc.GetAttr<bool>("inplace");
  }
  CHECK(param_.x) << "Input(X) of ReshapeOp should not be null.";
  CHECK(param_.output) << "Output(Out) of ReshapeOp should not be null.";
  CHECK(!param_.shape.empty())
      << "The shape information must be set by Attr(shape).";
  return true;
}

bool Reshape2Op::CheckShape() const {
  ReshapeOp::CheckShape();
  CHECK_OR_FALSE(param_.xshape);
  return true;
}

bool Reshape2Op::InferShape() const {
  ReshapeOp::InferShape();
  auto x_dims = param_.x->dims();
  std::vector<DDim::value_type> xshape_dims(x_dims.size() + 1, 1);
  for (size_t i = 0; i < x_dims.size(); i++) {
    xshape_dims[i + 1] = x_dims[i];
  }
  param_.xshape->Resize(DDim(xshape_dims));
  return true;
}

bool Reshape2Op::AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) {
  ReshapeOp::AttachImpl(opdesc, scope);
  auto xshape_var = scope->FindVar(opdesc.Output("XShape").front());
  CHECK(xshape_var);
  param_.xshape = xshape_var->GetMutable<lite::Tensor>();
  CHECK(param_.xshape) << "Output(XShape) of ReshapeOp should not be null.";
  return true;
}

DDim ValidateShape(const std::vector<int> &shape, const DDim &input_dims) {
  const DDim::value_type input_size = input_dims.production();
  auto input_shape = input_dims.Vectorize();
  bool all_positive = std::all_of(input_shape.cbegin(),
                                  input_shape.cend(),
                                  [](DDim::value_type i) { return i > 0; });
  // only one dimension can be set to -1, whose size will be automatically
  // infered.
  const int unk_dim_val = -1;
  const int copy_dim_val = 0;

  std::vector<DDim::value_type> output_shape(shape.size(), 0);
  DDim::value_type capacity = 1;
  int unk_dim_idx = -1;
  for (size_t i = 0; i < shape.size(); ++i) {
    if (shape[i] == unk_dim_val) {
      CHECK_EQ(unk_dim_idx, -1)
          << "Only one input dimension of Attr(shape) can be unknown.";
      unk_dim_idx = i;
    } else if (shape[i] == copy_dim_val) {
      CHECK_LT(static_cast<int>(i), input_shape.size())
          << "The index of dimension to copy from input shape must be less "
             "than the size of input shape.";
    } else {
      CHECK_GT(shape[i], 0) << "Each input dimension of Attr(shape) must not "
                               "be negtive except one unknown dimension.";
    }

    capacity *=
        (shape[i] ? static_cast<DDim::value_type>(shape[i]) : input_shape[i]);
    output_shape[i] =
        (shape[i] ? static_cast<DDim::value_type>(shape[i]) : input_shape[i]);
  }

  if (unk_dim_idx != -1) {
    if (all_positive) {
      // input_size < 0 and is un-determinate in compile time, skip the check,
      // for example, input_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
      // capacity = -24, input_size = -8, output_shape[0] = 0
      // the following check will fail.
      output_shape[unk_dim_idx] = -input_size / capacity;
      CHECK_EQ(output_shape[unk_dim_idx] * capacity, -input_size)
          << "Invalid shape is given.";
    } else {
      output_shape[unk_dim_idx] = -1;
    }
  } else {
    CHECK_EQ(capacity, input_size) << "Invalid shape is given.";
  }
  return DDim(output_shape);
}

}  // namespace operators
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_OP(reshape, paddle::lite::operators::ReshapeOp);
REGISTER_LITE_OP(reshape2, paddle::lite::operators::Reshape2Op);