test_pool_op.cpp 6.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Z
ZhenWang 已提交
15
#include <iostream>
W
wangliu 已提交
16
#include "../test_include.h"
H
hjchen2 已提交
17
#include "operators/math/pooling.h"
W
wangliu 已提交
18
#include "operators/pool_op.h"
19

Z
ZhenWang 已提交
20
namespace paddle_mobile {
H
hjchen2 已提交
21 22 23

namespace math = operators::math;

Z
ZhenWang 已提交
24 25 26 27 28 29 30 31
static int PoolOutputSize(int input_size, int filter_size, int padding,
                          int stride, bool ceil_mode) {
  int output_size;
  if (!ceil_mode) {
    output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  } else {
    output_size =
        (input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
32
  }
Z
ZhenWang 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
  return output_size;
}

template <typename T, int CeilMode, int PoolType, int Kernel, int Pad,
          int Stride>
int TestPoolOp(int in_channels, int in_height, int in_width) {
  int kernel_h = Kernel;
  int kernel_w = Kernel;
  int pad_h = Pad;
  int pad_w = Pad;
  int stride_h = Stride;
  int stride_w = Stride;
  bool ceil_mode = CeilMode != 0;
  std::string pooling_type = (PoolType == 0 ? "max" : "avg");

  int batch_size = 1;
  int input_c = in_channels;
  int input_h = in_height;
  int input_w = in_width;

  framework::DDim input_shape =
      framework::make_ddim({batch_size, input_c, input_h, input_w});

  std::vector<int64_t> output_shape_v({batch_size, input_c});
  output_shape_v.push_back(
      PoolOutputSize(input_h, kernel_h, pad_h, stride_h, ceil_mode));
  output_shape_v.push_back(
      PoolOutputSize(input_w, kernel_w, pad_w, stride_w, ceil_mode));

  framework::DDim output_shape = framework::make_ddim(output_shape_v);
63

Z
ZhenWang 已提交
64 65 66 67 68
  VariableNameMap inputs;
  VariableNameMap outputs;
  auto scope = std::make_shared<framework::Scope>();
  inputs["X"] = std::vector<std::string>({"input"});
  outputs["Out"] = std::vector<std::string>({"output"});
69

Z
ZhenWang 已提交
70 71 72
  auto input_var = scope.get()->Var("input");
  auto input = input_var->template GetMutable<framework::LoDTensor>();
  SetupTensor<T>(input, input_shape, -127, 127);
73

Z
ZhenWang 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  auto output_var = scope.get()->Var("output");
  framework::AttributeMap attrs;
  attrs["pooling_type"].SetString(pooling_type);
  attrs["ksize"].Set<vector<int>>(std::vector<int>({kernel_h, kernel_w}));
  attrs["strides"].Set<vector<int>>(std::vector<int>({stride_h, stride_w}));
  attrs["paddings"].Set<vector<int>>(std::vector<int>({pad_h, pad_w}));
  attrs["ceil_mode"].Set<bool>(false);
  attrs["global_pooling"].Set<bool>(false);

  auto *op = new operators::PoolOp<CPU, float>("pool2d", inputs, outputs, attrs,
                                               scope);
  op->InferShape();
  op->Init();
  op->Run();

  framework::Tensor output_cmp;
  output_cmp.mutable_data<T>(output_shape);
H
hjchen2 已提交
91 92 93 94 95

  if (pooling_type == "avg") {
    math::Pooling<Avg>()(*input, std::vector<int>{kernel_h, kernel_w},
                         std::vector<int>{stride_h, stride_w},
                         std::vector<int>{pad_h, pad_w}, &output_cmp);
Z
ZhenWang 已提交
96
  } else {
H
hjchen2 已提交
97 98 99
    math::Pooling<Max>()(*input, std::vector<int>{kernel_h, kernel_w},
                         std::vector<int>{stride_h, stride_w},
                         std::vector<int>{pad_h, pad_w}, &output_cmp);
Z
ZhenWang 已提交
100 101 102 103 104 105 106
  }

  // compare results
  auto output = output_var->template Get<framework::LoDTensor>();
  const T *output_data = output->data<T>();
  T *output_cmp_data = output_cmp.data<T>();
  for (int i = 0; i < output->numel(); ++i) {
Z
ZhenWang 已提交
107
    PADDLE_MOBILE_ENFORCE(output_data[i] == output_cmp_data[i],
H
hjchen2 已提交
108 109
                          "output[%d] = %d, output_cmp[%d] = %d", i,
                          output_data[i], i, output_cmp_data[i]);
110
  }
Z
ZhenWang 已提交
111
  delete op;
112
  return 0;
113
}
Z
ZhenWang 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
}  // namespace paddle_mobile

int main(int argc, char *argv[]) {
  if (argc < 4) {
    LOG(paddle_mobile::kLOG_INFO)
        << "Usage:\n"
        << "  ./test-pool-op in_channels in_height in_width \n"
        << "  params:\n"
        << "   -in_channels: int, input image's channels\n"
        << "   -in_height: int, input image's height\n"
        << "   -in_width: int, input image's width\n";
    return 1;
  }
  int in_channels = atoi(argv[1]);
  int in_height = atoi(argv[2]);
  int in_width = atoi(argv[3]);
  // kernel = 3, pad = 1, stride = 1
  LOG(paddle_mobile::kLOG_INFO)
      << "float, ceil_mode=false, pooling_type=max, kernel=3, pad=1, stride=1";
  paddle_mobile::TestPoolOp<float, 0, 0, 3, 1, 1>(in_channels, in_height,
                                                  in_width);
  // kernel = 3, pad = 0, stride = 2
  LOG(paddle_mobile::kLOG_INFO)
      << "float, ceil_mode=false, pooling_type=max, kernel=3, pad=0, stride=2";
  paddle_mobile::TestPoolOp<float, 0, 0, 3, 0, 2>(in_channels, in_height,
                                                  in_width);
H
hjchen2 已提交
140
  // kernel = 5, pad = 0, stride = 1
Z
ZhenWang 已提交
141
  LOG(paddle_mobile::kLOG_INFO)
H
hjchen2 已提交
142 143 144 145
      << "float, ceil_mode=false, pooling_type=avg, kernel=5, pad=0, stride=1";
  paddle_mobile::TestPoolOp<float, 0, 1, 5, 0, 1>(in_channels, in_height,
                                                  in_width);
  // kernel = 5, pad = 0, stride = 2
Z
ZhenWang 已提交
146
  LOG(paddle_mobile::kLOG_INFO)
H
hjchen2 已提交
147 148 149
      << "float, ceil_mode=false, pooling_type=avg, kernel=5, pad=0, stride=1";
  paddle_mobile::TestPoolOp<float, 0, 1, 5, 0, 2>(in_channels, in_height,
                                                  in_width);
Z
ZhenWang 已提交
150 151 152 153 154 155 156 157 158 159
  // kernel = 7, pad = 0, stride = 1
  LOG(paddle_mobile::kLOG_INFO)
      << "float, ceil_mode=false, pooling_type=avg, kernel=7, pad=0, stride=1";
  paddle_mobile::TestPoolOp<float, 0, 1, 7, 0, 1>(in_channels, in_height,
                                                  in_width);
  // kernel = 7, pad = 0, stride = 4
  LOG(paddle_mobile::kLOG_INFO)
      << "float, ceil_mode=false, pooling_type=avg, kernel=7, pad=0, stride=4";
  paddle_mobile::TestPoolOp<float, 0, 1, 7, 0, 4>(in_channels, in_height,
                                                  in_width);
Z
ZhenWang 已提交
160
}