test_pool_op.cpp 12.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Z
ZhenWang 已提交
15
#include <iostream>
W
wangliu 已提交
16
#include "../test_include.h"
Z
ZhenWang 已提交
17
#include "operators/kernel/central-arm-func/pool_arm_func.h"
W
wangliu 已提交
18
#include "operators/pool_op.h"
19

Z
ZhenWang 已提交
20 21 22 23 24 25 26 27 28
namespace paddle_mobile {
static int PoolOutputSize(int input_size, int filter_size, int padding,
                          int stride, bool ceil_mode) {
  int output_size;
  if (!ceil_mode) {
    output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  } else {
    output_size =
        (input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
29
  }
Z
ZhenWang 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  return output_size;
}

template <typename T>
static void PoolAvgPad0(std::vector<int> ksize, std::vector<int> strides,
                        const framework::Tensor *input,
                        framework::Tensor *out) {
  const int32_t batch_size = input->dims()[0];
  const int32_t input_c = input->dims()[1];
  const int32_t input_h = input->dims()[2];
  const int32_t input_w = input->dims()[3];
  const int32_t out_c = out->dims()[1];
  const int32_t out_h = out->dims()[2];
  const int32_t out_w = out->dims()[3];
  const int32_t kernel_h = ksize[0];
  const int32_t kernel_w = ksize[1];
  const int32_t stride_h = strides[0];
  const int32_t stride_w = strides[1];
  const int32_t inputdata_channel_stride = input_h * input_w;
  const int32_t input_batch_stride = input_c * inputdata_channel_stride;
  const int32_t outputdata_channel_stride = out_h * out_w;
  const int32_t output_batch_stride = out_c * outputdata_channel_stride;
  T *out_data = out->mutable_data<T>();
  const T *input_data = input->data<T>();
  const T **rows = new const T *[kernel_h];
  for (int i = 0; i < batch_size; ++i) {
    for (int j = 0; j < out_c; ++j) {
      const T *img_in = input_data + j * inputdata_channel_stride;
      T *img_out = out_data + j * outputdata_channel_stride;
      for (int k = 0; k < out_h; ++k) {
        for (int m = 0; m < kernel_h; ++m) {
          rows[m] = img_in + (stride_h * k + m) * input_w;
        }
        int32_t left = out_w;
        while (left > 0) {
          float tmp = 0;
          for (int m = 0; m < kernel_h; ++m) {
            for (int l = 0; l < kernel_w; ++l) {
              tmp += rows[m][l];
            }
          }
          if (typeid(T) == typeid(int8_t)) {
            tmp = tmp / (kernel_h * kernel_w);
            if (tmp < -127) {
              *img_out = -127;
            } else if (tmp > 127) {
              *img_out = 127;
            } else {
              *img_out = static_cast<T>(std::round(tmp));
            }
          } else {
            *img_out = static_cast<T>(tmp / (kernel_h * kernel_w));
          }
          for (int m = 0; m < kernel_h; ++m) {
            rows[m] += stride_w;
          }
          img_out++;
          left--;
        }
      }
    }
    input_data += input_batch_stride;
    out_data += output_batch_stride;
  }
  delete[] rows;
}

template <typename T, int CeilMode, int PoolType, int Kernel, int Pad,
          int Stride>
int TestPoolOp(int in_channels, int in_height, int in_width) {
  int kernel_h = Kernel;
  int kernel_w = Kernel;
  int pad_h = Pad;
  int pad_w = Pad;
  int stride_h = Stride;
  int stride_w = Stride;
  bool ceil_mode = CeilMode != 0;
  std::string pooling_type = (PoolType == 0 ? "max" : "avg");

  int batch_size = 1;
  int input_c = in_channels;
  int input_h = in_height;
  int input_w = in_width;

  framework::DDim input_shape =
      framework::make_ddim({batch_size, input_c, input_h, input_w});

  std::vector<int64_t> output_shape_v({batch_size, input_c});
  output_shape_v.push_back(
      PoolOutputSize(input_h, kernel_h, pad_h, stride_h, ceil_mode));
  output_shape_v.push_back(
      PoolOutputSize(input_w, kernel_w, pad_w, stride_w, ceil_mode));

  framework::DDim output_shape = framework::make_ddim(output_shape_v);
124

Z
ZhenWang 已提交
125 126 127 128 129
  VariableNameMap inputs;
  VariableNameMap outputs;
  auto scope = std::make_shared<framework::Scope>();
  inputs["X"] = std::vector<std::string>({"input"});
  outputs["Out"] = std::vector<std::string>({"output"});
130

Z
ZhenWang 已提交
131 132 133
  auto input_var = scope.get()->Var("input");
  auto input = input_var->template GetMutable<framework::LoDTensor>();
  SetupTensor<T>(input, input_shape, -127, 127);
134

Z
ZhenWang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  auto output_var = scope.get()->Var("output");
  framework::AttributeMap attrs;
  attrs["pooling_type"].SetString(pooling_type);
  attrs["ksize"].Set<vector<int>>(std::vector<int>({kernel_h, kernel_w}));
  attrs["strides"].Set<vector<int>>(std::vector<int>({stride_h, stride_w}));
  attrs["paddings"].Set<vector<int>>(std::vector<int>({pad_h, pad_w}));
  attrs["ceil_mode"].Set<bool>(false);
  attrs["global_pooling"].Set<bool>(false);

  auto *op = new operators::PoolOp<CPU, float>("pool2d", inputs, outputs, attrs,
                                               scope);
  op->InferShape();
  op->Init();
  op->Run();

  framework::Tensor output_cmp;
  output_cmp.mutable_data<T>(output_shape);
  if (pooling_type == "avg" && pad_h == 0 && pad_h == pad_w) {
    PoolAvgPad0<T>(std::vector<int>{kernel_h, kernel_w},
                   std::vector<int>{stride_h, stride_w}, input, &output_cmp);
  } else {
    if (typeid(T) == typeid(int8_t)) {
      operators::PoolBasic<int8_t, int32_t>(
          pooling_type, std::vector<int>{kernel_h, kernel_w},
          std::vector<int>{stride_h, stride_w}, std::vector<int>{pad_h, pad_w},
          input, &output_cmp);
    } else {
      operators::PoolBasic<float, float>(
          pooling_type, std::vector<int>{kernel_h, kernel_w},
          std::vector<int>{stride_h, stride_w}, std::vector<int>{pad_h, pad_w},
          input, &output_cmp);
    }
  }

  // compare results
  int eq = 0;
  int neq = 0;
  auto output = output_var->template Get<framework::LoDTensor>();
  const T *output_data = output->data<T>();
  T *output_cmp_data = output_cmp.data<T>();
  for (int i = 0; i < output->numel(); ++i) {
Z
ZhenWang 已提交
176 177
    //    PADDLE_MOBILE_ENFORCE(output_data[i] == output_cmp_data[i],
    //                          "The execution of test_pool_op is failed!");
Z
ZhenWang 已提交
178 179 180 181 182
    if (output_data[i] == output_cmp_data[i]) {
      ++eq;
    } else {
      ++neq;
    }
183
  }
Z
ZhenWang 已提交
184 185 186
  std::cout << "eq = " << eq << ", neq = " << neq << std::endl;
  delete op;

187
  return 0;
188
}
Z
ZhenWang 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
}  // namespace paddle_mobile

int main(int argc, char *argv[]) {
  if (argc < 4) {
    LOG(paddle_mobile::kLOG_INFO)
        << "Usage:\n"
        << "  ./test-pool-op in_channels in_height in_width \n"
        << "  params:\n"
        << "   -in_channels: int, input image's channels\n"
        << "   -in_height: int, input image's height\n"
        << "   -in_width: int, input image's width\n";
    return 1;
  }
  int in_channels = atoi(argv[1]);
  int in_height = atoi(argv[2]);
  int in_width = atoi(argv[3]);
Z
ZhenWang 已提交
205
#if __ARM_NEON
Z
ZhenWang 已提交
206 207 208 209 210 211 212 213 214 215
  // kernel = 3, pad = 1, stride = 1
  LOG(paddle_mobile::kLOG_INFO)
      << "float, ceil_mode=false, pooling_type=max, kernel=3, pad=1, stride=1";
  paddle_mobile::TestPoolOp<float, 0, 0, 3, 1, 1>(in_channels, in_height,
                                                  in_width);
  // kernel = 3, pad = 0, stride = 2
  LOG(paddle_mobile::kLOG_INFO)
      << "float, ceil_mode=false, pooling_type=max, kernel=3, pad=0, stride=2";
  paddle_mobile::TestPoolOp<float, 0, 0, 3, 0, 2>(in_channels, in_height,
                                                  in_width);
Z
ZhenWang 已提交
216
#endif
Z
ZhenWang 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
  // kernel = 3, pad = 0, stride = 1
  LOG(paddle_mobile::kLOG_INFO)
      << "int8_t, ceil_mode=false, pooling_type=max, kernel=3, pad=0, stride=1";
  paddle_mobile::TestPoolOp<int8_t, 0, 0, 3, 0, 1>(in_channels, in_height,
                                                   in_width);
  // kernel = 3, pad = 1, stride = 1
  LOG(paddle_mobile::kLOG_INFO)
      << "int8_t, ceil_mode=false, pooling_type=max, kernel=3, pad=1, stride=1";
  paddle_mobile::TestPoolOp<int8_t, 0, 0, 3, 1, 1>(in_channels, in_height,
                                                   in_width);
  // kernel = 3, pad = 2, stride = 1
  LOG(paddle_mobile::kLOG_INFO)
      << "int8_t, ceil_mode=false, pooling_type=max, kernel=3, pad=2, stride=1";
  paddle_mobile::TestPoolOp<int8_t, 0, 0, 3, 2, 1>(in_channels, in_height,
                                                   in_width);
  // kernel = 3, pad = 0, stride = 2
  LOG(paddle_mobile::kLOG_INFO)
      << "int8_t, ceil_mode=false, pooling_type=max, kernel=3, pad=0, stride=2";
  paddle_mobile::TestPoolOp<int8_t, 0, 0, 3, 0, 2>(in_channels, in_height,
                                                   in_width);
  // kernel = 3, pad = 1, stride = 2
  LOG(paddle_mobile::kLOG_INFO)
      << "int8_t, ceil_mode=false, pooling_type=max, kernel=3, pad=1, stride=2";
  paddle_mobile::TestPoolOp<int8_t, 0, 0, 3, 1, 2>(in_channels, in_height,
                                                   in_width);
  // kernel = 3, pad = 0, stride = 2
  LOG(paddle_mobile::kLOG_INFO)
      << "int8_t, ceil_mode=false, pooling_type=max, kernel=3, pad=2, stride=2";
  paddle_mobile::TestPoolOp<int8_t, 0, 0, 3, 2, 2>(in_channels, in_height,
                                                   in_width);
Z
ZhenWang 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
  //  // kernel = 3, pad = 3, stride = 3
  //  LOG(paddle_mobile::kLOG_INFO)
  //      << "int8_t, ceil_mode=false, pooling_type=max, kernel=3, pad=3,
  //      stride=3";
  //  paddle_mobile::TestPoolOp<int8_t, 0, 0, 3, 3, 3>(in_channels, in_height,
  //                                                   in_width);
  //  // kernel = 7, pad = 0, stride = 1
  //  LOG(paddle_mobile::kLOG_INFO)
  //      << "int8_t, ceil_mode=false, pooling_type=avg, kernel=7, pad=0,
  //      stride=1";
  //  paddle_mobile::TestPoolOp<int8_t, 0, 1, 7, 0, 1>(in_channels, in_height,
  //                                                   in_width);
  //  // kernel = 7, pad = 0, stride = 2
  //  LOG(paddle_mobile::kLOG_INFO)
  //      << "int8_t, ceil_mode=false, pooling_type=avg, kernel=7, pad=0,
  //      stride=2";
  //  paddle_mobile::TestPoolOp<int8_t, 0, 1, 7, 0, 2>(in_channels, in_height,
  //                                                   in_width);
  //  // kernel = 7, pad = 0, stride = 3
  //  LOG(paddle_mobile::kLOG_INFO)
  //      << "int8_t, ceil_mode=false, pooling_type=avg, kernel=7, pad=0,
  //      stride=3";
  //  paddle_mobile::TestPoolOp<int8_t, 0, 1, 7, 0, 3>(in_channels, in_height,
  //                                                   in_width);
  //  // kernel = 3, pad = 0, stride = 1
  //  LOG(paddle_mobile::kLOG_INFO)
  //      << "int8_t, ceil_mode=false, pooling_type=avg, kernel=3, pad=0,
  //      stride=1";
  //  paddle_mobile::TestPoolOp<int8_t, 0, 1, 3, 0, 1>(in_channels, in_height,
  //                                                   in_width);
  //  // kernel = 3, pad = 0, stride = 3
  //  LOG(paddle_mobile::kLOG_INFO)
  //      << "int8_t, ceil_mode=false, pooling_type=avg, kernel=3, pad=0,
  //      stride=3";
  //  paddle_mobile::TestPoolOp<int8_t, 0, 1, 3, 0, 3>(in_channels, in_height,
  //                                                   in_width);
  //  // kernel = 7, pad = 0, stride = 1
  //  LOG(paddle_mobile::kLOG_INFO)
  //      << "float, ceil_mode=false, pooling_type=avg, kernel=7, pad=0,
  //      stride=1";
  //  paddle_mobile::TestPoolOp<float, 0, 1, 7, 0, 1>(in_channels, in_height,
  //                                                  in_width);
  //  // kernel = 7, pad = 0, stride = 4
  //  LOG(paddle_mobile::kLOG_INFO)
  //      << "float, ceil_mode=false, pooling_type=avg, kernel=7, pad=0,
  //      stride=4";
  //  paddle_mobile::TestPoolOp<float, 0, 1, 7, 0, 4>(in_channels, in_height,
  //                                                  in_width);
  //  // kernel = 5, pad = 0, stride = 1
  //  LOG(paddle_mobile::kLOG_INFO)
  //      << "float, ceil_mode=false, pooling_type=avg, kernel=5, pad=0,
  //      stride=1";
  //  paddle_mobile::TestPoolOp<float, 0, 1, 5, 0, 1>(in_channels, in_height,
  //                                                  in_width);
Z
ZhenWang 已提交
301
}