conv_func.cpp 22.9 KB
Newer Older
Z
zhaojiaying01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
16
#include <vector>
Z
zhaojiaying01 已提交
17 18 19 20 21
#include "framework/cl/cl_image_converter.h"
#include "framework/cl/cl_tensor.h"

namespace paddle_mobile {
namespace operators {
22
bool use_lws = true;
Z
zhaojiaying01 已提交
23 24

template <>
25 26
void winograd_transform_weight<4, 3>(framework::CLHelper *cl_helper,
                                     framework::CLImage *weight) {}
Z
zhaojiaying01 已提交
27 28

template <>
29 30 31 32 33
void WinogradConv3x3<4, 3>(framework::CLHelper *cl_helper,
                           const ConvParam<GPU_CL> &param, bool ifRelu,
                           const framework::CLImage *biase,
                           const framework::CLImage *new_scale,
                           const framework::CLImage *new_bias) {}
Z
zhaojiaying01 已提交
34

35
void ConvAddBnRelu(framework::CLHelper *cl_helper,
Z
zhaojiaying01 已提交
36
                   const ConvParam<GPU_CL> &param, bool ifRelu,
37 38 39 40 41
                   const framework::CLImage *biase,
                   const framework::CLImage *new_scale,
                   const framework::CLImage *new_bias) {
  auto kernel = cl_helper->KernelAt(0);
  auto default_work_size = cl_helper->DefaultWorkSize(*param.Output());
Z
zhaojiaying01 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  auto input = param.Input()->GetCLImage();
  auto filter = param.Filter()->GetCLImage();

  auto output = param.Output()->GetCLImage();
  int stride = param.Strides()[0];
  int offset = param.Offset();
  int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
                    param.Input()->Converter())
                    ->GetCBlock();
  int dilation = param.Dilations()[0];
  int input_width = param.Input()->dims()[3];
  int input_height = param.Input()->dims()[2];
  int output_width = param.Output()->dims()[3];
  int output_height = param.Output()->dims()[2];
59 60
  int filter_channel = param.Filter()->dims()[1];
  int input_channel = param.Input()->dims()[1];
Z
zhaojiaying01 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

  //  DLOG << " c block " << c_block;
  //  DLOG << " w " << w;
  //  DLOG << " nh " << nh;
  //  DLOG << " stride " << stride;
  //  DLOG << " offset " << offset;
  //  DLOG << " input_c " << input_c;
  //  DLOG << " dilation " << dilation;
  //  DLOG << " input width " << input_width;
  //  DLOG << " input height " << input_height;
  //  DLOG << " output width " << output_width;
  //  DLOG << " output height " << output_height;
  //  DLOG << " input dim " << param.Input()->dims();
  //  DLOG << " output dim " << param.Output()->dims();
  //  DLOG << " filter dim " << param.Filter()->dims();

  cl_int status;
  int index = 0;

  if (param.Filter()->dims()[2] == 1 && param.Filter()->dims()[3] == 1) {
    status = clSetKernelArg(kernel, index++, sizeof(int), &c_block);
    CL_CHECK_ERRORS(status);

    int maped_w = maptofactor(w, 4);
    status = clSetKernelArg(kernel, index++, sizeof(int), &maped_w);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &nh);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &input);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &filter);
    CL_CHECK_ERRORS(status);

    if (biase) {
      auto bias_mem = biase->GetCLImage();
      status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &bias_mem);
      CL_CHECK_ERRORS(status);
    }

    if (new_scale && new_bias) {
      auto new_scale_mem = new_scale->GetCLImage();
      status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_scale_mem);
      CL_CHECK_ERRORS(status);

      auto new_bias_mem = new_bias->GetCLImage();
      status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_bias_mem);
      CL_CHECK_ERRORS(status);
    }

    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &output);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &stride);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &offset);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &input_c);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &dilation);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &input_width);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &input_height);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &output_width);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &output_height);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &w);
    CL_CHECK_ERRORS(status);

    const size_t work_size[3] = {
        static_cast<const uint32_t>(default_work_size.data()[0]),
        static_cast<const uint32_t>(maped_w),
        static_cast<const uint32_t>(default_work_size.data()[2])};

148 149 150 151 152 153 154 155 156 157 158 159
    if (work_size[1] % 60 == 0 && use_lws) {
      const size_t local_work_size[3] = {static_cast<const uint32_t>(1),
                                         static_cast<const uint32_t>(60),
                                         static_cast<const uint32_t>(1)};
      status = clEnqueueNDRangeKernel(cl_helper->CLCommandQueue(), kernel,
                                      default_work_size.size(), NULL, work_size,
                                      local_work_size, 0, NULL, NULL);
    } else {
      status = clEnqueueNDRangeKernel(cl_helper->CLCommandQueue(), kernel,
                                      default_work_size.size(), NULL, work_size,
                                      NULL, 0, NULL, NULL);
    }
Z
zhaojiaying01 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    CL_CHECK_ERRORS(status);
  } else {
    status = clSetKernelArg(kernel, index++, sizeof(int), &c_block);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &w);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &nh);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &input);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &filter);
    CL_CHECK_ERRORS(status);

    if (biase) {
      auto bias_mem = biase->GetCLImage();
      status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &bias_mem);
      CL_CHECK_ERRORS(status);
    }

    if (new_scale && new_bias) {
      auto new_scale_mem = new_scale->GetCLImage();
      status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_scale_mem);
      CL_CHECK_ERRORS(status);

      auto new_bias_mem = new_bias->GetCLImage();
      status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_bias_mem);
      CL_CHECK_ERRORS(status);
    }

    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &output);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &stride);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &offset);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &input_c);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &dilation);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &input_width);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &input_height);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &output_width);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &output_height);
    CL_CHECK_ERRORS(status);

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    if (param.Filter()->dims()[2] == 3 && param.Filter()->dims()[3] == 3) {
      if (filter_channel != input_channel) {
        if (filter_channel != 1) {
          status =
              clSetKernelArg(kernel, index++, sizeof(int), &filter_channel);
          CL_CHECK_ERRORS(status);
          int has_group = 1;
          status = clSetKernelArg(kernel, index++, sizeof(int), &has_group);
          CL_CHECK_ERRORS(status);
        }
      } else {
        status = clSetKernelArg(kernel, index++, sizeof(int), &filter_channel);
        CL_CHECK_ERRORS(status);
        int has_group = 0;
        status = clSetKernelArg(kernel, index++, sizeof(int), &has_group);
        CL_CHECK_ERRORS(status);
      }
    }

Z
zhaojiaying01 已提交
239
    status = clEnqueueNDRangeKernel(
240
        cl_helper->CLCommandQueue(), kernel, default_work_size.size(), NULL,
Z
zhaojiaying01 已提交
241 242 243 244 245
        default_work_size.data(), NULL, 0, NULL, NULL);
    CL_CHECK_ERRORS(status);
  }
}

Z
zhaojiaying01 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
void DWConvAddBnRelu(framework::CLHelper *cl_helper,
                     const ConvParam<GPU_CL> &param, bool ifRelu,
                     const framework::CLImage *biase,
                     const framework::CLImage *new_scale,
                     const framework::CLImage *new_bias) {
  auto kernel = cl_helper->KernelAt(0);
  auto default_work_size = cl_helper->DefaultWorkSize(*param.Output());
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  int w_blk_size = 2;
  int w_blk = (w + w_blk_size - 1) / w_blk_size;

  default_work_size[1] = w_blk;
  auto input = param.Input()->GetCLImage();
  auto filter = param.Filter()->GetCLImage();

  auto output = param.Output()->GetCLImage();
  int stride = param.Strides()[0];
  int pad = param.Paddings()[0];
  int dilation = param.Dilations()[0];

  int input_channel = param.Input()->dims()[1];
  int input_height = param.Input()->dims()[2];
  int input_width = param.Input()->dims()[3];

  int output_height = param.Output()->dims()[2];
  int output_width = param.Output()->dims()[3];

  //  DLOG << " w " << w;
  //  DLOG << " nh " << nh;
  //  DLOG << " stride " << stride;
  //  DLOG << " dilation " << dilation;
  //  DLOG << " input width " << input_width;
  //  DLOG << " input height " << input_height;
  //  DLOG << " output width " << output_width;
  //  DLOG << " output height " << output_height;
  //  DLOG << " input dim " << param.Input()->dims();
  //  DLOG << " output dim " << param.Output()->dims();
  //  DLOG << " filter dim " << param.Filter()->dims();

  cl_int status;
  int index = 0;

  status = clSetKernelArg(kernel, index++, sizeof(int), &c_block);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &w_blk);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &nh);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &input);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &filter);
  CL_CHECK_ERRORS(status);

  if (biase) {
    auto bias_mem = biase->GetCLImage();
    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &bias_mem);
    CL_CHECK_ERRORS(status);
  }

  if (new_scale && new_bias) {
    auto new_scale_mem = new_scale->GetCLImage();
    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_scale_mem);
    CL_CHECK_ERRORS(status);

    auto new_bias_mem = new_bias->GetCLImage();
    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_bias_mem);
    CL_CHECK_ERRORS(status);
  }

  status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &output);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &stride);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &pad);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &dilation);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &input_channel);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);

348 349 350 351 352 353 354 355 356 357 358 359 360
  if (default_work_size.data()[1] % 60 == 0 && use_lws) {
    const size_t local_work_size[3] = {static_cast<const uint32_t>(1),
                                       static_cast<const uint32_t>(60),
                                       static_cast<const uint32_t>(1)};
    status = clEnqueueNDRangeKernel(
        cl_helper->CLCommandQueue(), kernel, default_work_size.size(), NULL,
        default_work_size.data(), local_work_size, 0, NULL, NULL);
  } else {
    status = clEnqueueNDRangeKernel(
        cl_helper->CLCommandQueue(), kernel, default_work_size.size(), NULL,
        default_work_size.data(), NULL, 0, NULL, NULL);
  }

Z
zhaojiaying01 已提交
361 362 363
  CL_CHECK_ERRORS(status);
}

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
void SWConvAddBnRelu(framework::CLHelper *cl_helper,
                     const ConvParam<GPU_CL> &param, bool ifRelu,
                     const framework::CLImage *biase,
                     const framework::CLImage *new_scale,
                     const framework::CLImage *new_bias) {
  auto kernel = cl_helper->KernelAt(0);
  auto default_work_size = cl_helper->DefaultWorkSize(*param.Output());
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  int w_blk_size = 5;
  int w_blk = (w + w_blk_size - 1) / w_blk_size;
  default_work_size[1] = w_blk;

  int h_blk_size = 1;
  int h_blk = (nh + h_blk_size - 1) / h_blk_size;
  default_work_size[2] = h_blk;

  auto input = param.Input()->GetCLImage();
  auto filter = param.Filter()->GetCLImage();

  auto output = param.Output()->GetCLImage();
  int stride = param.Strides()[0];
  int pad = param.Paddings()[0];
  int dilation = param.Dilations()[0];

  int input_channel = param.Input()->dims()[1];
  int input_height = param.Input()->dims()[2];
  int input_width = param.Input()->dims()[3];

  int output_height = param.Output()->dims()[2];
  int output_width = param.Output()->dims()[3];

  cl_int status;
  int index = 0;

  status = clSetKernelArg(kernel, index++, sizeof(int), &c_block);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &w_blk);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &h_blk);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &input);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &filter);
  CL_CHECK_ERRORS(status);

  if (biase) {
    auto bias_mem = biase->GetCLImage();
    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &bias_mem);
    CL_CHECK_ERRORS(status);
  }

  if (new_scale && new_bias) {
    auto new_scale_mem = new_scale->GetCLImage();
    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_scale_mem);
    CL_CHECK_ERRORS(status);

    auto new_bias_mem = new_bias->GetCLImage();
    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_bias_mem);
    CL_CHECK_ERRORS(status);
  }

  status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &output);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &stride);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &pad);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, index++, sizeof(int), &dilation);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &input_channel);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, index++, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);

  if (default_work_size.data()[1] % 60 == 0 && use_lws) {
    const size_t local_work_size[3] = {static_cast<const uint32_t>(1),
                                       static_cast<const uint32_t>(60),
                                       static_cast<const uint32_t>(1)};
    status = clEnqueueNDRangeKernel(
        cl_helper->CLCommandQueue(), kernel, default_work_size.size(), NULL,
        default_work_size.data(), local_work_size, 0, NULL, NULL);
  } else {
    status = clEnqueueNDRangeKernel(
        cl_helper->CLCommandQueue(), kernel, default_work_size.size(), NULL,
        default_work_size.data(), NULL, 0, NULL, NULL);
  }
  CL_CHECK_ERRORS(status);
}
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

void DWConvTransposeAddBnRelu(framework::CLHelper *cl_helper,
                              const ConvTransposeParam<GPU_CL> &param,
                              bool ifRelu, const framework::CLImage *biase,
                              const framework::CLImage *new_scale,
                              const framework::CLImage *new_bias) {
  auto kernel = cl_helper->KernelAt(0);
  auto default_work_size = cl_helper->DefaultWorkSize(*param.Output());
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  int w_blk_size = 1;
  int w_blk = (w + w_blk_size - 1) / w_blk_size;
  default_work_size[1] = w_blk;

  int h_blk_size = 1;
  int h_blk = (nh + h_blk_size - 1) / h_blk_size;
  default_work_size[2] = h_blk;

  auto input = param.Input()->GetCLImage();
  auto filter = param.Filter()->GetCLImage();

  auto output = param.Output()->GetCLImage();
  int stride = param.Strides()[0];
  int pad = param.Paddings()[0];
  int dilation = param.Dilations()[0];

  int input_channel = param.Input()->dims()[1];
  int input_height = param.Input()->dims()[2];
  int input_width = param.Input()->dims()[3];

  int output_height = param.Output()->dims()[2];
  int output_width = param.Output()->dims()[3];

  int filter_height = param.Filter()->dims()[2];
  int filter_width = param.Filter()->dims()[3];

  cl_int status;
  int index = 0;

  status = clSetKernelArg(kernel, index++, sizeof(int), &c_block);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &w_blk);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &h_blk);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &input);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &filter);
  CL_CHECK_ERRORS(status);

  if (biase) {
    auto bias_mem = biase->GetCLImage();
    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &bias_mem);
    CL_CHECK_ERRORS(status);
  }

  if (new_scale && new_bias) {
    auto new_scale_mem = new_scale->GetCLImage();
    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_scale_mem);
    CL_CHECK_ERRORS(status);

    auto new_bias_mem = new_bias->GetCLImage();
    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_bias_mem);
    CL_CHECK_ERRORS(status);
  }

  status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &output);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &stride);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &pad);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, index++, sizeof(int), &dilation);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &input_channel);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &filter_width);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, index++, sizeof(int), &filter_height);
  CL_CHECK_ERRORS(status);

  if (default_work_size.data()[1] % 60 == 0 && use_lws) {
    const size_t local_work_size[3] = {static_cast<const uint32_t>(1),
                                       static_cast<const uint32_t>(60),
                                       static_cast<const uint32_t>(1)};
    status = clEnqueueNDRangeKernel(
        cl_helper->CLCommandQueue(), kernel, default_work_size.size(), NULL,
        default_work_size.data(), local_work_size, 0, NULL, NULL);
  } else {
    status = clEnqueueNDRangeKernel(
        cl_helper->CLCommandQueue(), kernel, default_work_size.size(), NULL,
        default_work_size.data(), NULL, 0, NULL, NULL);
  }
  CL_CHECK_ERRORS(status);
}

void ConvTransposeAddBnRelu(framework::CLHelper *cl_helper,
                            const ConvTransposeParam<GPU_CL> &param,
                            bool ifRelu, const framework::CLImage *biase,
                            const framework::CLImage *new_scale,
                            const framework::CLImage *new_bias) {
  auto kernel = cl_helper->KernelAt(0);
  const auto *input = param.Input();
  auto *output = param.Output();
  auto *filter = param.Filter();
  const int n = input->dims()[0];
  const int input_c = input->dims()[1];
  const int input_c_block = (input_c + 3) / 4;
  const int input_width = input->dims()[3];
  const int input_height = input->dims()[2];
  const int output_c = output->dims()[1];
  const int output_c_block = (output_c + 3) / 4;
  const int output_width = output->dims()[3];
  const int output_height = output->dims()[2];

  auto inputImage = input->GetCLImage();
  auto outputImage = output->GetCLImage();
  auto filterImage = filter->GetCLImage();

  cl_int status;
  status = clSetKernelArg(kernel, 0, sizeof(int), &input_c_block);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 2, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 4, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &inputImage);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &filterImage);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_mem), &outputImage);
  CL_CHECK_ERRORS(status);

  const size_t work_size[3] = {(size_t)output_c_block, (size_t)input_width,
                               (size_t)(n * input_height)};

  DLOG << "conv transpose " << input_c_block << input_width << input_height
       << output_width << output_height << work_size[0] << work_size[1]
       << work_size[2];

  clEnqueueNDRangeKernel(cl_helper->CLCommandQueue(), kernel, 3, NULL,
                         work_size, NULL, 0, NULL, NULL);
}
Z
zhaojiaying01 已提交
641
}  // namespace operators
Z
zhaojiaying01 已提交
642
}  // namespace paddle_mobile