conv_arm_func.h 7.8 KB
Newer Older
L
liuruilong 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuruilong 已提交
2

L
liuruilong 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
L
liuruilong 已提交
6

L
liuruilong 已提交
7 8 9 10 11 12 13 14 15 16 17
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#pragma once
18
#include <vector>
19
#include "operators/math/conv_func.h"
H
hjchen2 已提交
20
#include "operators/math/depthwise_conv3x3.h"
21
#include "operators/math/depthwise_conv5x5.h"
22 23
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
24
#include "operators/math/pad.h"
25
#include "operators/math/vol2col.h"
H
hjchen2 已提交
26
#include "operators/math/winograd/winograd_transform.h"
L
liuruilong 已提交
27 28 29 30
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {
31

32
template <typename Itype, typename Otype>
H
hjchen2 已提交
33
inline void GemmConv(const ConvParam<CPU> &param) {
L
liuruilong 已提交
34 35 36
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
  Tensor *output = param.Output();
37
  output->mutable_data<Otype>();
L
liuruilong 已提交
38
  int groups = param.Groups();
39 40 41
  const std::vector<int> strides = param.Strides();
  const std::vector<int> paddings = param.Paddings();
  const std::vector<int> dilations = param.Dilations();
L
liuruilong 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
L
liuruilong 已提交
55
      framework::flatten_to_2d(col_shape, data_dim + 1);
L
liuruilong 已提交
56

57 58
  bool is_expand =
      math::IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liuruilong 已提交
59 60 61
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
62
    col.mutable_data<Itype>(col_shape);
L
liuruilong 已提交
63 64 65 66 67
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
L
liuruilong 已提交
68
      input->dims(), 1, static_cast<int>(input->dims().size()));
L
liuruilong 已提交
69 70 71 72 73

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
L
liuruilong 已提交
74 75
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};
L
liuruilong 已提交
76 77 78 79 80

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

81 82
  math::Vol2ColFunctor<CPU, Itype> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, Itype> im2col;
L
liuruilong 已提交
83

H
hjchen2 已提交
84
  const int batch_size = static_cast<int>(input->dims()[0]);
L
liuruilong 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }

      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
H
hjchen2 已提交
110
      math::MatMul<Itype, Otype>(filter_slice, false, col_matrix, false,
111 112 113
                                 static_cast<float>(1), &out_slice,
                                 static_cast<float>(0), false,
                                 static_cast<Otype *>(nullptr));
L
liuruilong 已提交
114 115 116 117
    }
  }
}

H
hjchen2 已提交
118 119
template <int tile, int kernel>
inline void WinogradConv3x3(const ConvParam<CPU> &param) {
120
  const Tensor *input = param.Input();
H
hjchen2 已提交
121
  const Tensor *filter = param.transformed_filter_;
122 123 124 125 126 127
  Tensor *output = param.Output();
  output->mutable_data<float>();
  int batch_size = input->dims()[0];
  int groups = param.Groups();
  const std::vector<int> &paddings = param.Paddings();

H
hjchen2 已提交
128 129
  auto winograd_pad = [&](int width, int pad) {
    int output_tile = tile - kernel + 1;
130 131
    // int tiles = (width + pad - kernel) / output_tile + 1;
    // return (tiles - 1) * output_tile + tile - width;
H
hjchen2 已提交
132 133 134 135
    int pad_width = (width + 2 * pad - kernel) / output_tile * output_tile;
    return pad_width + tile - width;
  };

H
hjchen2 已提交
136
  math::PadFunctor<CPU, float> pad;
137
  Tensor input_pad;
H
hjchen2 已提交
138
  framework::Tensor transformed_input;
139 140 141
  for (int i = 0; i < batch_size; ++i) {
    Tensor in_batch = input->Slice(i, i + 1);
    Tensor out_batch = output->Slice(i, i + 1);
142 143 144 145
    // int pad_bottom = winograd_pad(in_batch.dims()[2], paddings[0]);
    // int pad_right = winograd_pad(in_batch.dims()[3], paddings[1]);
    int pad_bottom = paddings[0];
    int pad_right = paddings[1];
H
hjchen2 已提交
146
    if (paddings[0] || paddings[1] || pad_bottom || pad_right) {
147
      framework::DDim pad_shape = in_batch.dims();
H
hjchen2 已提交
148 149
      pad_shape[2] += paddings[0] + pad_bottom;
      pad_shape[3] += paddings[1] + pad_right;
150
      input_pad.mutable_data<float>(pad_shape);
H
hjchen2 已提交
151
      pad(in_batch, paddings[0], pad_bottom, paddings[1], pad_right,
152
          &input_pad);
153
    } else {
H
hjchen2 已提交
154
      input_pad = in_batch;
155
    }
H
hjchen2 已提交
156 157 158 159 160
    // tile input and transform
    math::winograd_transform_input<tile, kernel>(input_pad, &transformed_input);
    // caculate output
    math::winograd_transform_output<tile, kernel>(transformed_input, *filter,
                                                  output);
H
hjchen2 已提交
161 162 163
  }
}

164
#ifndef __aarch64__
H
hjchen2 已提交
165 166 167 168
template <typename Itype, typename Otype>
inline void DepthwiseConv3x3(const ConvParam<CPU> &param) {
  const Tensor *input = param.Input();
  const Tensor *filter = param.Filter();
169 170 171
  const std::vector<int> &paddings = param.Paddings();
  const std::vector<int> &strides = param.Strides();
  const int batch_size = input->dims()[0];
H
hjchen2 已提交
172 173 174 175 176 177 178
  Tensor *output = param.Output();
  output->mutable_data<Otype>();

  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1);
    Tensor out_batch = output->Slice(i, i + 1);
    if (strides[0] == 1) {
H
hjchen2 已提交
179
      math::DepthwiseConv3x3S1<Itype, Otype>(in_batch, *filter, paddings,
180
                                             &out_batch);
H
hjchen2 已提交
181
    } else if (strides[0] == 2) {
H
hjchen2 已提交
182
      math::DepthwiseConv3x3S2<Itype, Otype>(in_batch, *filter, paddings,
183
                                             &out_batch);
H
hjchen2 已提交
184
    } else {
185
      GemmConv<Itype, Otype>(param);
H
hjchen2 已提交
186
    }
E
eclipsess 已提交
187 188
  }
}
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

template <typename Itype, typename Otype>
inline void DepthwiseConv5x5(const ConvParam<CPU> &param) {
  const Tensor *input = param.Input();
  const Tensor *filter = param.Filter();
  const std::vector<int> &paddings = param.Paddings();
  const std::vector<int> &strides = param.Strides();
  const int batch_size = input->dims()[0];
  Tensor *output = param.Output();
  output->mutable_data<Otype>();

  if (strides[0] == 1) {
    for (int i = 0; i < batch_size; i++) {
      Tensor in_batch = input->Slice(i, i + 1);
      Tensor out_batch = output->Slice(i, i + 1);
      math::DepthwiseConv5x5S1<Itype, Otype>(in_batch, *filter, paddings,
                                             &out_batch);
    }
  } else {
    GemmConv<Itype, Otype>(param);
  }
}
211
#endif  // __aarch64__
E
eclipsess 已提交
212

L
liuruilong 已提交
213 214
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
215 216

#endif