reshape_image_compute.cc 7.5 KB
Newer Older
X
xiebaiyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

// reshape operator
class ReshapeComputeFloatImage : public KernelLite<TARGET(kOpenCL),
30
                                                   PRECISION(kFP16),
X
xiebaiyuan 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
                                                   DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::ReshapeParam;

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/reshape_kernel.cl", build_options_);
  }

  void Run() override {
    VLOG(4) << "reshape_compute run ... ";

    auto& param = *param_.get_mutable<param_t>();
    const Tensor* const x = param.x;

    const auto x_dims = x->dims();
    const std::map<std::string, size_t>& input_image_shape =
        InitImageDimInfoWith(x_dims);

    const int64_t& input_image_width = input_image_shape.at("width");
    const int64_t& input_image_height = input_image_shape.at("height");

54
    const cl::Image2D* const x_image = x->data<uint16_t, cl::Image2D>();
X
xiebaiyuan 已提交
55 56 57 58 59 60 61 62

    const std::vector<int>& shape_vct = param.shape_vct;
    Tensor* const output = param.output;
    const DDimLite& out_dims = output->dims();
    VLOG(4) << "out_dims= " << out_dims;

    const std::map<std::string, size_t>& out_image_shape =
        InitImageDimInfoWith(out_dims);
63
    cl::Image2D* const out_image = output->mutable_data<uint16_t, cl::Image2D>(
X
xiebaiyuan 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        out_image_shape.at("width"), out_image_shape.at("height"));
    LOG(INFO) << "out_dims=   " << out_dims;

    const std::vector<size_t>& default_work_size = DefaultWorkSize(
        out_dims,
        DDim(std::vector<DDim::value_type>{
            static_cast<int64_t>(out_image_shape.at("width")),
            static_cast<int64_t>(out_image_shape.at("height"))}));

    int x_v_dims[4] = {1, 1, 1, 1};
    int out_v_dims[4] = {1, 1, 1, 1};
    // 1 1000 1 1
    for (int i = 0; i < x_dims.size(); i++) {
      x_v_dims[4 - x_dims.size() + i] = x_dims[i];
    }
    // 1 1 1 1000
    for (int i = 0; i < out_dims.size(); i++) {
      out_v_dims[4 - out_dims.size() + i] = out_dims[i];
    }

    int out_C = out_v_dims[1];
    int out_H = out_v_dims[2];
    int out_W = out_v_dims[3];
    int in_W = x_v_dims[3];
    int in_H = x_v_dims[2];
    int in_Stride0 = in_W;
    int in_Stride1 = x_v_dims[2] * x_v_dims[3];
    int in_Stride2 = x_v_dims[1] * x_v_dims[2] * x_v_dims[3];
    int out_Stride0 = out_W;
    int out_Stride1 = out_H * out_W;
    int out_Stride2 = out_C * out_H * out_W;
    VLOG(4) << "out_C=" << out_C;
    VLOG(4) << "out_H=" << out_H;
    VLOG(4) << "out_W=" << out_W;
    VLOG(4) << "in_W=" << in_W;
    VLOG(4) << "default_work_size= " << default_work_size[0] << ", "
            << default_work_size[1] << ", " << default_work_size[2];
    VLOG(4) << "in_Stride0=" << in_Stride0;
    VLOG(4) << "in_Stride1=" << in_Stride1;
    VLOG(4) << "out_Stride0=" << out_Stride0;
    VLOG(4) << "out_Stride1=" << out_Stride1;

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());
    VLOG(4) << TargetToStr(x->target());
    VLOG(4) << TargetToStr(param.output->target());

    int arg_idx = 0;

    cl_int status;
    status = kernel.setArg(arg_idx, *x_image);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_image);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, out_C);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, out_H);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, out_W);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, in_W);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, in_H);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, in_Stride0);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, in_Stride1);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, in_Stride2);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, out_Stride0);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, out_Stride1);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, out_Stride2);
    CL_CHECK_FATAL(status);

    auto global_work_size =
        cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                    static_cast<size_t>(default_work_size.data()[1]),
                    static_cast<size_t>(default_work_size.data()[2])};

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_image, event_);
  }

 private:
  std::string kernel_func_name_{"reshape"};
162
  std::string build_options_{"-DCL_DTYPE_half"};
X
xiebaiyuan 已提交
163 164 165 166 167 168 169 170 171 172
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(reshape,
                     kOpenCL,
173
                     kFP16,
X
xiebaiyuan 已提交
174 175 176 177 178
                     kImageDefault,
                     paddle::lite::kernels::opencl::ReshapeComputeFloatImage,
                     image2d)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
179
                                      PRECISION(kFP16),
X
xiebaiyuan 已提交
180 181 182 183 184
                                      DATALAYOUT(kImageDefault))})
    .BindInput("ShapeTensor", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Shape", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
185
                                       PRECISION(kFP16),
X
xiebaiyuan 已提交
186 187 188 189 190
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

REGISTER_LITE_KERNEL(reshape2,
                     kOpenCL,
191
                     kFP16,
X
xiebaiyuan 已提交
192 193 194 195 196
                     kImageDefault,
                     paddle::lite::kernels::opencl::ReshapeComputeFloatImage,
                     image2d)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
197
                                      PRECISION(kFP16),
X
xiebaiyuan 已提交
198 199 200 201 202 203
                                      DATALAYOUT(kImageDefault))})
    .BindInput("ShapeTensor", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Shape", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("XShape", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
204
                                       PRECISION(kFP16),
X
xiebaiyuan 已提交
205 206
                                       DATALAYOUT(kImageDefault))})
    .Finalize();