// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/logging.h" #include "lite/utils/replace_stl/stream.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { // reshape operator class ReshapeComputeFloatImage : public KernelLite { public: using param_t = operators::ReshapeParam; void PrepareForRun() override { auto& context = ctx_->As(); context.cl_context()->AddKernel( kernel_func_name_, "image/reshape_kernel.cl", build_options_); } void Run() override { VLOG(4) << "reshape_compute run ... "; auto& param = *param_.get_mutable(); const Tensor* const x = param.x; const auto x_dims = x->dims(); const std::map& input_image_shape = InitImageDimInfoWith(x_dims); const int64_t& input_image_width = input_image_shape.at("width"); const int64_t& input_image_height = input_image_shape.at("height"); const cl::Image2D* const x_image = x->data(); const std::vector& shape_vct = param.shape_vct; Tensor* const output = param.output; const DDimLite& out_dims = output->dims(); VLOG(4) << "out_dims= " << out_dims; const std::map& out_image_shape = InitImageDimInfoWith(out_dims); cl::Image2D* const out_image = output->mutable_data( out_image_shape.at("width"), out_image_shape.at("height")); LOG(INFO) << "out_dims= " << out_dims; const std::vector& default_work_size = DefaultWorkSize( out_dims, DDim(std::vector{ static_cast(out_image_shape.at("width")), static_cast(out_image_shape.at("height"))})); int x_v_dims[4] = {1, 1, 1, 1}; int out_v_dims[4] = {1, 1, 1, 1}; // 1 1000 1 1 for (int i = 0; i < x_dims.size(); i++) { x_v_dims[4 - x_dims.size() + i] = x_dims[i]; } // 1 1 1 1000 for (int i = 0; i < out_dims.size(); i++) { out_v_dims[4 - out_dims.size() + i] = out_dims[i]; } int out_C = out_v_dims[1]; int out_H = out_v_dims[2]; int out_W = out_v_dims[3]; int in_W = x_v_dims[3]; int in_H = x_v_dims[2]; int in_Stride0 = in_W; int in_Stride1 = x_v_dims[2] * x_v_dims[3]; int in_Stride2 = x_v_dims[1] * x_v_dims[2] * x_v_dims[3]; int out_Stride0 = out_W; int out_Stride1 = out_H * out_W; int out_Stride2 = out_C * out_H * out_W; VLOG(4) << "out_C=" << out_C; VLOG(4) << "out_H=" << out_H; VLOG(4) << "out_W=" << out_W; VLOG(4) << "in_W=" << in_W; VLOG(4) << "default_work_size= " << default_work_size[0] << ", " << default_work_size[1] << ", " << default_work_size[2]; VLOG(4) << "in_Stride0=" << in_Stride0; VLOG(4) << "in_Stride1=" << in_Stride1; VLOG(4) << "out_Stride0=" << out_Stride0; VLOG(4) << "out_Stride1=" << out_Stride1; auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); VLOG(4) << TargetToStr(x->target()); VLOG(4) << TargetToStr(param.output->target()); int arg_idx = 0; cl_int status; status = kernel.setArg(arg_idx, *x_image); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *out_image); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, out_C); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, out_H); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, out_W); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, in_W); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, in_H); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, in_Stride0); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, in_Stride1); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, in_Stride2); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, out_Stride0); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, out_Stride1); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, out_Stride2); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange{static_cast(default_work_size.data()[0]), static_cast(default_work_size.data()[1]), static_cast(default_work_size.data()[2])}; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(out_image, event_); } private: std::string kernel_func_name_{"reshape"}; std::string build_options_{"-DCL_DTYPE_half"}; std::shared_ptr event_{new cl::Event}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(reshape, kOpenCL, kFP16, kImageDefault, paddle::lite::kernels::opencl::ReshapeComputeFloatImage, image2d) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindInput("ShapeTensor", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindInput("Shape", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize(); REGISTER_LITE_KERNEL(reshape2, kOpenCL, kFP16, kImageDefault, paddle::lite::kernels::opencl::ReshapeComputeFloatImage, image2d) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindInput("ShapeTensor", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindInput("Shape", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindOutput("XShape", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize();