conv_bn_relu_kernel.cpp 4.6 KB
Newer Older
Y
yangfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVBNRELU_OP

#include "operators/kernel/conv_bn_relu_kernel.h"
18
#include <cmath>
Z
zhaojiaying01 已提交
19
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
Y
yangfei 已提交
20 21

namespace paddle_mobile {
Y
yangfei 已提交
22
namespace operators {
Y
yangfei 已提交
23

Y
yangfei 已提交
24 25 26
template <>
bool ConvBNReluKernel<GPU_CL, float>::Init(
    FusionConvBNReluParam<GPU_CL> *param) {
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  PADDLE_MOBILE_ENFORCE(
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
          param->Paddings()[0] == param->Paddings()[1],
      "need equal");
  const framework::CLImage *mean = param->InputMean();
  const framework::CLImage *variance = param->InputVariance();
  const framework::CLImage *scale = param->InputScale();
  const framework::CLImage *bias = param->InputBias();
  const float epsilon = param->Epsilon();

  const int C = mean->numel();

  auto mean_ptr = mean->data<float>();
  auto variance_ptr = variance->data<float>();
  auto scale_ptr = scale->data<float>();
  auto bias_ptr = bias->data<float>();

  float inv_std_ptr[C];
  for (int i = 0; i < C; i++) {
    inv_std_ptr[i] =
        1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
  }
  float *new_scale_ptr = new float[C];
  float *new_bias_ptr = new float[C];

  for (int i = 0; i < C; i++) {
    new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
    new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
  }

  framework::CLImage *new_scale = new framework::CLImage();

  //  for (int j = 0; j < C; ++j) {
  //    DLOG << " new scale - " << j << new_scale_ptr[j];
  //  }
  //
  //  for (int j = 0; j < C; ++j) {
  //    DLOG << " new bias - " << j << new_bias_ptr[j];
  //  }

  new_scale->SetTensorData(new_scale_ptr, variance->dims());
  new_scale->InitCLImage(this->cl_helper_.CLContext(),
                         cl_helper_.CLCommandQueue());

  //  DLOG << " climage - y bias: " << *(param->Bias());
  //
  //  DLOG << " climage - new scale: " << *new_scale;

  framework::CLImage *new_bias = new framework::CLImage();

  new_bias->SetTensorData(new_bias_ptr, variance->dims());
  new_bias->InitCLImage(this->cl_helper_.CLContext(),
                        cl_helper_.CLCommandQueue());

  //  DLOG << " climage - new bias: " << *new_bias;
  //
  //  DLOG << " climage - filter: " << *(param->Filter());

  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);

  delete[](new_scale_ptr);
  delete[](new_bias_ptr);

  PADDLE_MOBILE_ENFORCE(
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
          param->Paddings()[0] == param->Paddings()[1],
      "need equal");

  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);

  param->SetOffset(offset);

  if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
    param->Filter()->InitNImage(cl_helper_.CLContext(),
                                cl_helper_.CLCommandQueue());
104
    this->cl_helper_.AddKernel("conv_1x1_spl", "conv_bn_relu_kernel.cl");
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    DLOG << " conv bn relu conv 1x1";
  } else if (param->Filter()->dims()[1] == 1 &&
             param->Input()->dims()[1] == param->Output()->dims()[1] &&
             param->Filter()->dims()[2] == 3) {
    param->Filter()->InitDWImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());
    this->cl_helper_.AddKernel("depth_conv_3x3", "conv_bn_relu_kernel.cl");
    DLOG << " conv bn relu depth_conv_3x3";

  } else if (param->Filter()->dims()[2] == 3 &&
             param->Filter()->dims()[3] == 3) {
    param->Filter()->InitCLImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());

    this->cl_helper_.AddKernel("conv_3x3", "conv_bn_relu_kernel.cl");
    DLOG << " conv bn relu conv_3x3";
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
  }
Y
yangfei 已提交
124 125
  return true;
}
Y
yangfei 已提交
126

Y
yangfei 已提交
127 128
template <>
void ConvBNReluKernel<GPU_CL, float>::Compute(
129
    const FusionConvBNReluParam<GPU_CL> &param) {
Z
zhaojiaying01 已提交
130 131
  ConvAddBnRelu(this->cl_helper_, param, true, nullptr, param.NewScale(),
                param.NewBias());
132
}
Y
yangfei 已提交
133
template class ConvBNReluKernel<GPU_CL, float>;
Y
yangfei 已提交
134

Y
yangfei 已提交
135
}  // namespace operators
Y
yangfei 已提交
136 137 138
}  // namespace paddle_mobile

#endif