elementwise_ops.cc 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/rknpu/bridges/graph.h"
#include "lite/kernels/rknpu/bridges/utility.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace rknpu {

std::vector<int64_t> CvtYShape(const DDim& x_dims,
                               const DDim& y_dims,
                               int axis) {
  CHECK_EQ(x_dims.size(), 4UL) << "[RKNPU] Only support 4-dimension x";
  CHECK_GE(x_dims.size(), y_dims.size());

  if (axis < 0) {
    axis += x_dims.size();
  }

  std::vector<int64_t> y_new_shape(y_dims.Vectorize());
  if (y_new_shape.size() == 4UL) {
    return y_new_shape;
  }
  for (int i = 0; i < axis; i++) {
    y_new_shape.insert(y_new_shape.begin(), 1);
  }
  while (y_new_shape.size() < 4) {
    y_new_shape.push_back(1);
  }
  CHECK_EQ(y_new_shape.size(), 4UL);
  return y_new_shape;
}

int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[RKNPU] Converting " + op_type + "...";

  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x_type = kernel->GetInputDeclType("X");
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();
  auto y_name = op_info->Input("Y").front();
  auto y_type = kernel->GetInputDeclType("Y");
  auto y = scope->FindMutableTensor(y_name);
  auto y_dims = y->dims();
  auto out_name = op_info->Output("Out").front();
  auto out_type = kernel->GetOutputDeclType("Out");
  auto output = scope->FindMutableTensor(out_name);
  auto axis = op_info->GetAttr<int>("axis");

  // for quantization
  bool enable_int8 = false;
  float input_scale = 1.0;
  float output_scale = 1.0;
  int bit_length = 8;
  DataLayoutType layout = DATALAYOUT(kNCHW);
  PrecisionType precision = PRECISION(kFloat);

  if (op_info->HasAttr("enable_int8")) {
    enable_int8 = op_info->GetAttr<bool>("enable_int8");
    input_scale = op_info->GetAttr<float>("input_scale");
    bit_length = op_info->GetAttr<int>("bit_length");
    output_scale = op_info->GetAttr<float>("output_scale");

    if (enable_int8) {
      precision = PRECISION(kInt8);
    }
  }

  // X node
  std::shared_ptr<Node> x_node = nullptr;
  if (graph->Has(x_name)) {
    x_node = graph->Get(x_name);
  } else {
    QuantizationInfo qnt;
    qnt.enable_int8 = enable_int8;

    if (enable_int8) {
      qnt.scale.clear();
      qnt.scale.push_back(input_scale);
      qnt.quant_bits = op_info->GetAttr<int>("bit_length");
    }
    x_node = graph->Add(x_name, *x, x_type->precision(), x_type->layout(), qnt);
  }

  // Y node
  std::shared_ptr<Node> y_node = nullptr;
  if (graph->Has(y_name)) {
    y_node = graph->Get(y_name);
  } else {
    // auto y_new_shape = CvtYShape(x_dims, y_dims, axis);
    // y_node = graph->Add(y_name, *y, y_new_shape);
    QuantizationInfo qnt;
    qnt.enable_int8 = enable_int8;

    if (enable_int8) {
      qnt.quant_bits = bit_length;
      qnt.scale.clear();
      qnt.scale.push_back(input_scale);
    }
    y_node = graph->Add(y_name, *y, y_type->precision(), y_type->layout(), qnt);
  }

  std::shared_ptr<Node> output_node = nullptr;
  QuantizationInfo output_qnt;

  output_qnt.enable_int8 = enable_int8;

  if (enable_int8) {
    output_qnt.quant_bits = bit_length;
    output_qnt.scale.clear();
    output_qnt.scale.push_back(output_scale);
    output->mutable_data<int8_t>();
  }

  output_node = graph->Add(
      out_name, *output, x_type->precision(), x_type->layout(), output_qnt);

  std::vector<std::shared_ptr<rk::nn::Tensor>> inputs;
  std::vector<std::shared_ptr<rk::nn::Tensor>> outputs;

  inputs.push_back(x_node->data());
  inputs.push_back(y_node->data());
  outputs.push_back(output_node->data());

  auto rGraph = graph->GetHandle();

  // Elementwise node
  if (op_type == "elementwise_add") {
    auto elt_node = rGraph->AddOperator(
        rk::nn::OperatorType::ADD, inputs, outputs, nullptr);
  } else if (op_type == "elementwise_sub") {
    auto elt_node = rGraph->AddOperator(
        rk::nn::OperatorType::SUBTRACT, inputs, outputs, nullptr);
  } else if (op_type == "elementwise_mul") {
    auto elt_node = rGraph->AddOperator(
        rk::nn::OperatorType::MULTIPLY, inputs, outputs, nullptr);
  } else if (op_type == "elementwise_div") {
    auto elt_node = rGraph->AddOperator(
        rk::nn::OperatorType::DIVIDE, inputs, outputs, nullptr);
  } else {
    LOG(WARNING) << "[RKNPU] Unsupported op type: " << op_type;
    return FAILED;
  }

  return REBUILD_WHEN_SHAPE_CHANGED;
}

}  // namespace rknpu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(elementwise_add,
                         kRKNPU,
                         paddle::lite::subgraph::rknpu::ElementwiseConverter);
REGISTER_SUBGRAPH_BRIDGE(elementwise_sub,
                         kRKNPU,
                         paddle::lite::subgraph::rknpu::ElementwiseConverter);
REGISTER_SUBGRAPH_BRIDGE(elementwise_mul,
                         kRKNPU,
                         paddle::lite::subgraph::rknpu::ElementwiseConverter);
REGISTER_SUBGRAPH_BRIDGE(elementwise_div,
                         kRKNPU,
                         paddle::lite::subgraph::rknpu::ElementwiseConverter);