// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/rknpu/bridges/graph.h" #include "lite/kernels/rknpu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace rknpu { std::vector CvtYShape(const DDim& x_dims, const DDim& y_dims, int axis) { CHECK_EQ(x_dims.size(), 4UL) << "[RKNPU] Only support 4-dimension x"; CHECK_GE(x_dims.size(), y_dims.size()); if (axis < 0) { axis += x_dims.size(); } std::vector y_new_shape(y_dims.Vectorize()); if (y_new_shape.size() == 4UL) { return y_new_shape; } for (int i = 0; i < axis; i++) { y_new_shape.insert(y_new_shape.begin(), 1); } while (y_new_shape.size() < 4) { y_new_shape.push_back(1); } CHECK_EQ(y_new_shape.size(), 4UL); return y_new_shape; } int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[RKNPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x_type = kernel->GetInputDeclType("X"); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto y_name = op_info->Input("Y").front(); auto y_type = kernel->GetInputDeclType("Y"); auto y = scope->FindMutableTensor(y_name); auto y_dims = y->dims(); auto out_name = op_info->Output("Out").front(); auto out_type = kernel->GetOutputDeclType("Out"); auto output = scope->FindMutableTensor(out_name); auto axis = op_info->GetAttr("axis"); // for quantization bool enable_int8 = false; float input_scale = 1.0; float output_scale = 1.0; int bit_length = 8; DataLayoutType layout = DATALAYOUT(kNCHW); PrecisionType precision = PRECISION(kFloat); if (op_info->HasAttr("enable_int8")) { enable_int8 = op_info->GetAttr("enable_int8"); input_scale = op_info->GetAttr("input_scale"); bit_length = op_info->GetAttr("bit_length"); output_scale = op_info->GetAttr("output_scale"); if (enable_int8) { precision = PRECISION(kInt8); } } // X node std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { QuantizationInfo qnt; qnt.enable_int8 = enable_int8; if (enable_int8) { qnt.scale.clear(); qnt.scale.push_back(input_scale); qnt.quant_bits = op_info->GetAttr("bit_length"); } x_node = graph->Add(x_name, *x, x_type->precision(), x_type->layout(), qnt); } // Y node std::shared_ptr y_node = nullptr; if (graph->Has(y_name)) { y_node = graph->Get(y_name); } else { // auto y_new_shape = CvtYShape(x_dims, y_dims, axis); // y_node = graph->Add(y_name, *y, y_new_shape); QuantizationInfo qnt; qnt.enable_int8 = enable_int8; if (enable_int8) { qnt.quant_bits = bit_length; qnt.scale.clear(); qnt.scale.push_back(input_scale); } y_node = graph->Add(y_name, *y, y_type->precision(), y_type->layout(), qnt); } std::shared_ptr output_node = nullptr; QuantizationInfo output_qnt; output_qnt.enable_int8 = enable_int8; if (enable_int8) { output_qnt.quant_bits = bit_length; output_qnt.scale.clear(); output_qnt.scale.push_back(output_scale); output->mutable_data(); } output_node = graph->Add( out_name, *output, x_type->precision(), x_type->layout(), output_qnt); std::vector> inputs; std::vector> outputs; inputs.push_back(x_node->data()); inputs.push_back(y_node->data()); outputs.push_back(output_node->data()); auto rGraph = graph->GetHandle(); // Elementwise node if (op_type == "elementwise_add") { auto elt_node = rGraph->AddOperator( rk::nn::OperatorType::ADD, inputs, outputs, nullptr); } else if (op_type == "elementwise_sub") { auto elt_node = rGraph->AddOperator( rk::nn::OperatorType::SUBTRACT, inputs, outputs, nullptr); } else if (op_type == "elementwise_mul") { auto elt_node = rGraph->AddOperator( rk::nn::OperatorType::MULTIPLY, inputs, outputs, nullptr); } else if (op_type == "elementwise_div") { auto elt_node = rGraph->AddOperator( rk::nn::OperatorType::DIVIDE, inputs, outputs, nullptr); } else { LOG(WARNING) << "[RKNPU] Unsupported op type: " << op_type; return FAILED; } return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace rknpu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(elementwise_add, kRKNPU, paddle::lite::subgraph::rknpu::ElementwiseConverter); REGISTER_SUBGRAPH_BRIDGE(elementwise_sub, kRKNPU, paddle::lite::subgraph::rknpu::ElementwiseConverter); REGISTER_SUBGRAPH_BRIDGE(elementwise_mul, kRKNPU, paddle::lite::subgraph::rknpu::ElementwiseConverter); REGISTER_SUBGRAPH_BRIDGE(elementwise_div, kRKNPU, paddle::lite::subgraph::rknpu::ElementwiseConverter);