proposal_kernel.cpp 20.2 KB
Newer Older
Z
zhangyang0701 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PROPOSAL_OP

17
#include <algorithm>
H
hjchen2 已提交
18
#include <cmath>
Z
zhangyang0701 已提交
19 20 21 22 23
#include <vector>
#include "operators/kernel/detection_kernel.h"

namespace paddle_mobile {
namespace operators {
H
hjchen2 已提交
24

25
static const double kBBoxClipDefault = std::log(1000.0 / 16.0);
Z
zhangyang0701 已提交
26 27 28

template <>
bool ProposalKernel<FPGA, float>::Init(ProposalParam<FPGA> *param) {
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  int post_nms_top_n = param->post_nms_topn_;
  int64_t batch = param->scores_->dims()[0];
  auto total = post_nms_top_n * batch;
  param->rpn_rois_->mutable_data<float>({total, 4});
  param->rpn_probs_->mutable_data<float>({total, 1});

  //  DLOG << *param->rpn_rois_;
  //  DLOG << *param->rpn_probs_;

  param->float_bbox = std::make_shared<Tensor>();
  param->float_bbox->Resize(param->bbox_deltas_->dims());
  param->float_bbox->init(typeid(float));
  fpga::format_fp32_ofm(param->float_bbox.get());
  param->float_score = std::make_shared<Tensor>();
  param->float_score->Resize(param->scores_->dims());
  param->float_score->init(typeid(float));
  fpga::format_fp32_ofm(param->float_score.get());

  auto input = param->bbox_deltas_;
  fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
  args.input_layout_type = fpga::LAYOUT_HWC;
  args.output_layout_type = fpga::LAYOUT_HWC;
  args.input_data_type = fpga::DATA_TYPE_FP16;
  args.output_data_type = fpga::DATA_TYPE_FP32;
  args.image.address = input->data<half>();
  args.image.height = (uint32_t)input->dims()[2];
  args.image.width = (uint32_t)input->dims()[3];
  args.image.channels = (uint32_t)input->dims()[1];
  args.output.address = param->float_bbox->mutable_data<float>();
  args.output.scale_address = param->float_bbox->scale;
  param->bbox_arg = args;

  input = param->scores_;
  args.image.address = input->data<half>();
  args.image.height = (uint32_t)input->dims()[2];
  args.image.width = (uint32_t)input->dims()[3];
  args.image.channels = (uint32_t)input->dims()[1];
  args.output.address = param->float_score->mutable_data<float>();
  args.output.scale_address = param->float_score->scale;
  param->score_arg = args;

J
jameswu2014 已提交
70
  param->score_index_ = std::make_shared<Tensor>();
71 72
  param->score_index_->mutable_data<int32_t>({input->numel()});
  auto score_index = param->score_index_->data<int32_t>();
J
jameswu2014 已提交
73 74
  for (int i = 0; i < input->numel(); ++i) {
    score_index[i] = i;
75 76
  }

Z
zhangyang0701 已提交
77 78
  return true;
}
J
jameswu2014 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
template <typename T>
void CPUGather(const Tensor &src, const Tensor &index, Tensor *output) {
  PADDLE_MOBILE_ENFORCE(index.dims().size() == 1 ||
                            (index.dims().size() == 2 && index.dims()[1] == 1),
                        "Dim not correct");
  int64_t index_size = index.dims()[0];

  auto src_dims = src.dims();

  const T *p_src = src.data<T>();
  const int *p_index = index.data<int>();
  T *p_output = output->data<T>();

  // slice size
  int slice_size = 1;
  for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];

  const size_t slice_bytes = slice_size * sizeof(T);

  for (int64_t i = 0; i < index_size; ++i) {
    int index_ = p_index[i];
    memcpy(p_output + i * slice_size, p_src + index_ * slice_size, slice_bytes);
  }
}
Z
zhangyang0701 已提交
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
void AppendProposals(Tensor *dst, int64_t offset, const Tensor &src) {
  auto *out_data = dst->data<void>();
  auto *to_add_data = src.data<void>();
  size_t size_of_t = framework::SizeOfType(src.type());
  offset *= size_of_t;
  std::memcpy(
      reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(out_data) + offset),
      to_add_data, src.numel() * size_of_t);
}

template <class T>
static inline void BoxCoder(Tensor *all_anchors, Tensor *bbox_deltas,
                            Tensor *variances, Tensor *proposals) {
  T *proposals_data = proposals->mutable_data<T>();

  int64_t row = all_anchors->dims()[0];
  int64_t len = all_anchors->dims()[1];

  auto *bbox_deltas_data = bbox_deltas->data<T>();
  auto *anchor_data = all_anchors->data<T>();
  const T *variances_data = nullptr;
  if (variances) {
    variances_data = variances->data<T>();
  }

  for (int64_t i = 0; i < row; ++i) {
    T anchor_width = anchor_data[i * len + 2] - anchor_data[i * len] + 1.0;
    T anchor_height = anchor_data[i * len + 3] - anchor_data[i * len + 1] + 1.0;

    T anchor_center_x = anchor_data[i * len] + 0.5 * anchor_width;
    T anchor_center_y = anchor_data[i * len + 1] + 0.5 * anchor_height;

    T bbox_center_x = 0, bbox_center_y = 0;
    T bbox_width = 0, bbox_height = 0;

J
jameswu2014 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    /*
        if (variances) {
          bbox_center_x =
              variances_data[i * len] * bbox_deltas_data[i * len] * anchor_width
       + anchor_center_x; bbox_center_y = variances_data[i * len + 1] *
                              bbox_deltas_data[i * len + 1] * anchor_height +
                          anchor_center_y;
          bbox_width = std::exp(std::min<T>(variances_data[i * len + 2] *
                                                bbox_deltas_data[i * len + 2],
                                            kBBoxClipDefault)) *
                       anchor_width;
          bbox_height = std::exp(std::min<T>(variances_data[i * len + 3] *
                                                 bbox_deltas_data[i * len + 3],
                                             kBBoxClipDefault)) *
                        anchor_height;
        } else {
    */
    bbox_center_x = bbox_deltas_data[i * len] * anchor_width + anchor_center_x;
    bbox_center_y =
        bbox_deltas_data[i * len + 1] * anchor_height + anchor_center_y;

    /*
          bbox_width = std::exp(std::min<T>(bbox_deltas_data[i * len + 2],
                                            kBBoxClipDefault)) *
                       anchor_width;
          bbox_height = std::exp(std::min<T>(bbox_deltas_data[i * len + 3],
                                             kBBoxClipDefault)) *
                        anchor_height;
    */
    bbox_width = std::exp(bbox_deltas_data[i * len + 2]) * anchor_width;
    bbox_height = std::exp(bbox_deltas_data[i * len + 3]) * anchor_height;
    //    }
171 172 173

    proposals_data[i * len] = bbox_center_x - bbox_width / 2;
    proposals_data[i * len + 1] = bbox_center_y - bbox_height / 2;
J
jameswu2014 已提交
174 175 176 177 178 179 180 181
    /*
        //wong
        proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2 - 1;
        proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2 - 1;
        //wong
    */
    proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2;
    proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2;
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
  }
  // return proposals;
}

template <class T>
static inline void ClipTiledBoxes(const Tensor &im_info, Tensor *boxes) {
  T *boxes_data = boxes->mutable_data<T>();
  const T *im_info_data = im_info.data<T>();
  T zero(0);
  for (int64_t i = 0; i < boxes->numel(); ++i) {
    if (i % 4 == 0) {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[1] - 1), zero);
    } else if (i % 4 == 1) {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[0] - 1), zero);
    } else if (i % 4 == 2) {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[1] - 1), zero);
    } else {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[0] - 1), zero);
    }
  }
}

template <class T>
static inline void FilterBoxes(Tensor *boxes, float min_size,
                               const Tensor &im_info, Tensor *keep) {
  const T *im_info_data = im_info.data<T>();
  T *boxes_data = boxes->mutable_data<T>();
  T im_scale = im_info_data[2];
  keep->Resize({boxes->dims()[0]});
  min_size = std::max(min_size, 1.0f);
  int *keep_data = keep->mutable_data<int>();

  int keep_len = 0;
  for (int i = 0; i < boxes->dims()[0]; ++i) {
    T ws = boxes_data[4 * i + 2] - boxes_data[4 * i] + 1;
    T hs = boxes_data[4 * i + 3] - boxes_data[4 * i + 1] + 1;
    T ws_origin_scale =
        (boxes_data[4 * i + 2] - boxes_data[4 * i]) / im_scale + 1;
    T hs_origin_scale =
        (boxes_data[4 * i + 3] - boxes_data[4 * i + 1]) / im_scale + 1;
    T x_ctr = boxes_data[4 * i] + ws / 2;
    T y_ctr = boxes_data[4 * i + 1] + hs / 2;
    if (ws_origin_scale >= min_size && hs_origin_scale >= min_size &&
        x_ctr <= im_info_data[1] && y_ctr <= im_info_data[0]) {
      keep_data[keep_len++] = i;
    }
  }
  keep->Resize({keep_len});
}

template <class T>
static inline std::vector<std::pair<T, int>> GetSortedScoreIndex(
    const std::vector<T> &scores) {
  std::vector<std::pair<T, int>> sorted_indices;
  sorted_indices.reserve(scores.size());
  for (size_t i = 0; i < scores.size(); ++i) {
    sorted_indices.emplace_back(scores[i], i);
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices.begin(), sorted_indices.end(),
                   [](const std::pair<T, int> &a, const std::pair<T, int> &b) {
                     return a.first < b.first;
                   });
  return sorted_indices;
}

template <class T>
static inline T BBoxArea(const T *box, bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <typename T>
static inline Tensor VectorToTensor(const std::vector<T> &selected_indices,
                                    int selected_num) {
  Tensor keep_nms;
  keep_nms.Resize({selected_num});
  auto *keep_data = keep_nms.mutable_data<T>();
  for (int i = 0; i < selected_num; ++i) {
    keep_data[i] = selected_indices[i];
  }
  return keep_nms;
}

template <class T>
static inline T JaccardOverlap(const T *box1, const T *box2, bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
    const T inter_w = std::max(T(0), inter_xmax - inter_xmin + 1);
    const T inter_h = std::max(T(0), inter_ymax - inter_ymin + 1);
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

template <class T>
static inline Tensor NMS(Tensor *bbox, Tensor *scores, T nms_threshold,
J
jameswu2014 已提交
303
                         float eta, int post_nms_num = 100) {
304 305 306 307 308 309 310 311 312 313 314 315 316
  int64_t num_boxes = bbox->dims()[0];
  // 4: [xmin ymin xmax ymax]
  int64_t box_size = bbox->dims()[1];

  std::vector<T> scores_data(num_boxes);
  std::copy_n(scores->data<T>(), num_boxes, scores_data.begin());
  std::vector<std::pair<T, int>> sorted_indices =
      GetSortedScoreIndex<T>(scores_data);

  std::vector<int> selected_indices;
  int selected_num = 0;
  T adaptive_threshold = nms_threshold;
  const T *bbox_data = bbox->data<T>();
J
jameswu2014 已提交
317
  while ((sorted_indices.size() != 0) && (selected_num < post_nms_num)) {
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    int idx = sorted_indices.back().second;
    bool flag = true;
    for (int kept_idx : selected_indices) {
      if (flag) {
        T overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
                                      bbox_data + kept_idx * box_size, false);
        flag = (overlap <= adaptive_threshold);
      } else {
        break;
      }
    }
    if (flag) {
      selected_indices.push_back(idx);
      ++selected_num;
    }
    sorted_indices.erase(sorted_indices.end() - 1);
    if (flag && eta < 1 && adaptive_threshold > 0.5) {
      adaptive_threshold *= eta;
    }
  }
  return VectorToTensor(selected_indices, selected_num);
}

template <typename T>
std::pair<Tensor, Tensor> ProposalForOneImage(
    const Tensor &im_info_slice, const Tensor &anchors, const Tensor &variances,
    const Tensor &bbox_deltas_slice,  // [M, 4]
    const Tensor &scores_slice,       // [N, 1]
J
jameswu2014 已提交
346 347
    const Tensor &score_index, int pre_nms_top_n, int post_nms_top_n,
    float nms_thresh, float min_size, float eta) {
348 349 350 351 352 353
  auto *scores_data = scores_slice.data<T>();

  // Sort index
  Tensor index_t;
  index_t.Resize({scores_slice.numel()});
  int *index = index_t.mutable_data<int>();
354
  /*for (int i = 0; i < scores_slice.numel(); ++i) {
355
    index[i] = i;
356
  }*/
J
jameswu2014 已提交
357 358 359
  std::memcpy(index, score_index.data<int32_t>(),
              scores_slice.numel() * sizeof(int));

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
  auto compare = [scores_data](const int64_t &i, const int64_t &j) {
    return scores_data[i] > scores_data[j];
  };

  if (pre_nms_top_n <= 0 || pre_nms_top_n >= scores_slice.numel()) {
    std::sort(index, index + scores_slice.numel(), compare);
  } else {
    std::nth_element(index, index + pre_nms_top_n, index + scores_slice.numel(),
                     compare);
    index_t.Resize({pre_nms_top_n});
  }

  Tensor scores_sel, bbox_sel, anchor_sel, var_sel;
  scores_sel.mutable_data<T>({index_t.numel(), 1});
  bbox_sel.mutable_data<T>({index_t.numel(), 4});
  anchor_sel.mutable_data<T>({index_t.numel(), 4});
  var_sel.mutable_data<T>({index_t.numel(), 4});

J
jameswu2014 已提交
378 379 380
  CPUGather<T>(scores_slice, index_t, &scores_sel);
  CPUGather<T>(bbox_deltas_slice, index_t, &bbox_sel);
  CPUGather<T>(anchors, index_t, &anchor_sel);
381 382
  Tensor proposals;
  proposals.mutable_data<T>({index_t.numel(), 4});
J
jameswu2014 已提交
383
  BoxCoder<T>(&anchor_sel, &bbox_sel, nullptr, &proposals);
384 385 386 387 388 389 390 391 392 393

  ClipTiledBoxes<T>(im_info_slice, &proposals);

  Tensor keep;
  FilterBoxes<T>(&proposals, min_size, im_info_slice, &keep);

  Tensor scores_filter;
  bbox_sel.mutable_data<T>({keep.numel(), 4});
  scores_filter.mutable_data<T>({keep.numel(), 1});

J
jameswu2014 已提交
394 395
  CPUGather<T>(proposals, keep, &bbox_sel);
  CPUGather<T>(scores_sel, keep, &scores_filter);
396 397 398 399
  if (nms_thresh <= 0) {
    return std::make_pair(bbox_sel, scores_filter);
  }

J
jameswu2014 已提交
400 401 402
  // Tensor keep_nms = NMS<T>(&bbox_sel, &scores_filter, nms_thresh, eta);
  Tensor keep_nms =
      NMS<T>(&bbox_sel, &scores_filter, nms_thresh, eta, post_nms_top_n);
403 404 405 406 407

  if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
    keep_nms.Resize({post_nms_top_n});
  }

J
jameswu2014 已提交
408 409
  proposals.mutable_data<T>({keep_nms.numel(), 4});   // original
  scores_sel.mutable_data<T>({keep_nms.numel(), 1});  // original
410

J
jameswu2014 已提交
411 412
  // proposals.mutable_data<T>({post_nms_top_n, 4});   // wong
  // scores_sel.mutable_data<T>({post_nms_top_n, 1});  // wong
J
jameswu2014 已提交
413 414
  CPUGather<T>(bbox_sel, keep_nms, &proposals);
  CPUGather<T>(scores_filter, keep_nms, &scores_sel);
415 416 417
  return std::make_pair(proposals, scores_sel);
}

Z
zhangyang0701 已提交
418 419
template <>
void ProposalKernel<FPGA, float>::Compute(const ProposalParam<FPGA> &param) {
J
jameswu2014 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
  auto input_score = param.scores_;
  auto input_score_data = input_score->data<half>();
  auto input_score_data_tmp = input_score->data<half>();
  uint32_t score_n, score_height, score_width, score_channels;

  auto input_bbox = param.bbox_deltas_;
  auto input_bbox_data = input_bbox->data<half>();
  auto input_bbox_data_tmp = input_bbox->data<half>();
  uint32_t bbox_n, bbox_height, bbox_width, bbox_channels;

  score_n = (uint32_t)(input_score->dims()[0]);
  score_channels = (uint32_t)(input_score->dims()[1]);
  score_height = (uint32_t)(input_score->dims()[2]);
  score_width = (uint32_t)(input_score->dims()[3]);

  bbox_n = (uint32_t)(input_bbox->dims()[0]);
  bbox_channels = (uint32_t)(input_bbox->dims()[1]);
  bbox_height = (uint32_t)(input_bbox->dims()[2]);
  bbox_width = (uint32_t)(input_bbox->dims()[3]);

  // score_tmp->init(typeid(half));
  std::shared_ptr<Tensor> score_tmp = std::make_shared<Tensor>();
  score_tmp->Resize(param.scores_->dims());
  score_tmp->mutable_data<half>();

  std::shared_ptr<Tensor> bbox_tmp = std::make_shared<Tensor>();
  bbox_tmp->Resize(param.bbox_deltas_->dims());
  bbox_tmp->mutable_data<half>();

  auto score_tmp_data = score_tmp->data<half>();
  auto bbox_tmp_data = bbox_tmp->data<half>();
  int64_t amount_per_side = score_width * score_height;
  int idx = 0;
  fpga::fpga_invalidate(
      input_score_data_tmp,
      score_height * score_width * score_channels * sizeof(half));
  for (int h = 0; h < score_height; h++) {
    for (int w = 0; w < score_width; w++) {
      for (int c = 0; c < score_channels; c++) {
        idx++;
        // DLOG  << "wong input_score: "<<
        // paddle_mobile::fpga::fp16_2_fp32(input_score_data[idx]);
        *(score_tmp_data + c * amount_per_side + score_width * h + w) =
            (*(input_score_data_tmp++));
      }
    }
  }
  amount_per_side = bbox_width * bbox_height;
  fpga::fpga_invalidate(input_bbox_data_tmp, bbox_height * bbox_width *
                                                 bbox_channels * sizeof(half));
  for (int h = 0; h < bbox_height; h++) {
    for (int w = 0; w < bbox_width; w++) {
      for (int c = 0; c < bbox_channels; c++) {
        idx++;
        // DLOG  << "wong input_score: "<<
        // paddle_mobile::fpga::fp16_2_fp32(input_score_data[idx]);
        *(bbox_tmp_data + c * amount_per_side + bbox_width * h + w) =
            (*(input_bbox_data_tmp++));
      }
    }
  }
  struct paddle_mobile::fpga::BypassArgs temp_score_arg;
  struct paddle_mobile::fpga::BypassArgs temp_bbox_arg;
  temp_score_arg = param.score_arg;
  temp_score_arg.image.address = score_tmp->data<half>();

  temp_bbox_arg = param.bbox_arg;
  temp_bbox_arg.image.address = bbox_tmp->data<half>();
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
  auto score_tensor = param.float_score.get();
  fpga::PerformBypass(param.score_arg);
  fpga::fpga_invalidate(score_tensor->data<float>(),
                        score_tensor->numel() * sizeof(float));

  auto bbox_tensor = param.float_bbox.get();
  fpga::PerformBypass(param.bbox_arg);
  fpga::fpga_invalidate(bbox_tensor->data<float>(),
                        bbox_tensor->numel() * sizeof(float));

  auto *scores = param.float_score.get();
  auto *bbox_deltas = param.float_bbox.get();
  auto *im_info = param.im_info_;
  auto anchors = *param.anchors_;
  auto variances = *param.variances_;

  auto *rpn_rois = param.rpn_rois_;
  auto *rpn_roi_probs = param.rpn_probs_;

507 508
  auto score_index = *(param.score_index_.get());

509 510
  int pre_nms_top_n = param.pre_nms_topn_;
  int post_nms_top_n = param.post_nms_topn_;
qnqinan's avatar
qnqinan 已提交
511 512 513
  // DLOG << " param.post_nms_topn_ : " << param.post_nms_topn_;

  float nms_thresh = param.nms_thresh_ / 2.0f;
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
  float min_size = param.min_size_;
  float eta = param.eta_;

  auto &scores_dim = scores->dims();
  int64_t num = scores_dim[0];
  int64_t c_score = scores_dim[1];
  int64_t h_score = scores_dim[2];
  int64_t w_score = scores_dim[3];

  auto &bbox_dim = bbox_deltas->dims();
  int64_t c_bbox = bbox_dim[1];
  int64_t h_bbox = bbox_dim[2];
  int64_t w_bbox = bbox_dim[3];

  //
J
jameswu2014 已提交
529 530
  rpn_rois->mutable_data<float>({bbox_deltas->numel(), 4});
  rpn_roi_probs->mutable_data<float>({scores->numel(), 1});
531 532 533 534 535

  framework::LoD lod;
  lod.resize(1);
  auto &lod0 = lod[0];
  lod0.push_back(0);
J
jameswu2014 已提交
536 537
  anchors.Resize({anchors.numel(), 4});
  variances.Resize({variances.numel(), 4});
538 539 540 541

  int64_t num_proposals = 0;
  for (int64_t i = 0; i < num; ++i) {
    Tensor im_info_slice = im_info->Slice(i, i + 1);
J
jameswu2014 已提交
542 543
    Tensor bbox_deltas_slice = (*bbox_tensor).Slice(i, i + 1);
    Tensor scores_slice = (*score_tensor).Slice(i, i + 1);
544

J
jameswu2014 已提交
545
    bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox, 4});
546 547 548 549
    scores_slice.Resize({h_score * w_score * c_score, 1});

    std::pair<Tensor, Tensor> tensor_pair = ProposalForOneImage<float>(
        im_info_slice, anchors, variances, bbox_deltas_slice, scores_slice,
J
jameswu2014 已提交
550
        score_index, pre_nms_top_n, post_nms_top_n, nms_thresh, min_size, eta);
551 552 553 554 555 556 557 558 559 560 561 562
    Tensor &proposals = tensor_pair.first;
    Tensor &scores = tensor_pair.second;

    AppendProposals(rpn_rois, 4 * num_proposals, proposals);
    AppendProposals(rpn_roi_probs, num_proposals, scores);
    num_proposals += proposals.dims()[0];
    lod0.push_back(num_proposals);
  }
  rpn_rois->set_lod(lod);
  rpn_roi_probs->set_lod(lod);
  rpn_rois->Resize({num_proposals, 4});
  rpn_roi_probs->Resize({num_proposals, 1});
Z
zhangyang0701 已提交
563 564 565 566 567 568
}

}  // namespace operators
}  // namespace paddle_mobile

#endif  // PROPOSAL_OP