proposal_kernel.cpp 20.0 KB
Newer Older
Z
zhangyang0701 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PROPOSAL_OP

17
#include <algorithm>
Z
zhangyang0701 已提交
18 19 20 21 22
#include <vector>
#include "operators/kernel/detection_kernel.h"

namespace paddle_mobile {
namespace operators {
23
static const double kBBoxClipDefault = std::log(1000.0 / 16.0);
Z
zhangyang0701 已提交
24 25 26

template <>
bool ProposalKernel<FPGA, float>::Init(ProposalParam<FPGA> *param) {
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
  int post_nms_top_n = param->post_nms_topn_;
  int64_t batch = param->scores_->dims()[0];
  auto total = post_nms_top_n * batch;
  param->rpn_rois_->mutable_data<float>({total, 4});
  param->rpn_probs_->mutable_data<float>({total, 1});

  //  DLOG << *param->rpn_rois_;
  //  DLOG << *param->rpn_probs_;

  param->float_bbox = std::make_shared<Tensor>();
  param->float_bbox->Resize(param->bbox_deltas_->dims());
  param->float_bbox->init(typeid(float));
  fpga::format_fp32_ofm(param->float_bbox.get());
  param->float_score = std::make_shared<Tensor>();
  param->float_score->Resize(param->scores_->dims());
  param->float_score->init(typeid(float));
  fpga::format_fp32_ofm(param->float_score.get());

  auto input = param->bbox_deltas_;
  fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
  args.input_layout_type = fpga::LAYOUT_HWC;
  args.output_layout_type = fpga::LAYOUT_HWC;
  args.input_data_type = fpga::DATA_TYPE_FP16;
  args.output_data_type = fpga::DATA_TYPE_FP32;
  args.image.address = input->data<half>();
  args.image.height = (uint32_t)input->dims()[2];
  args.image.width = (uint32_t)input->dims()[3];
  args.image.channels = (uint32_t)input->dims()[1];
  args.output.address = param->float_bbox->mutable_data<float>();
  args.output.scale_address = param->float_bbox->scale;
  param->bbox_arg = args;

  input = param->scores_;
  args.image.address = input->data<half>();
  args.image.height = (uint32_t)input->dims()[2];
  args.image.width = (uint32_t)input->dims()[3];
  args.image.channels = (uint32_t)input->dims()[1];
  args.output.address = param->float_score->mutable_data<float>();
  args.output.scale_address = param->float_score->scale;
  param->score_arg = args;

J
jameswu2014 已提交
68
  param->score_index_ = std::make_shared<Tensor>();
69 70
  param->score_index_->mutable_data<int32_t>({input->numel()});
  auto score_index = param->score_index_->data<int32_t>();
J
jameswu2014 已提交
71 72
  for (int i = 0; i < input->numel(); ++i) {
    score_index[i] = i;
73 74
  }

Z
zhangyang0701 已提交
75 76
  return true;
}
J
jameswu2014 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
template <typename T>
void CPUGather(const Tensor &src, const Tensor &index, Tensor *output) {
  PADDLE_MOBILE_ENFORCE(index.dims().size() == 1 ||
                            (index.dims().size() == 2 && index.dims()[1] == 1),
                        "Dim not correct");
  int64_t index_size = index.dims()[0];

  auto src_dims = src.dims();

  const T *p_src = src.data<T>();
  const int *p_index = index.data<int>();
  T *p_output = output->data<T>();

  // slice size
  int slice_size = 1;
  for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];

  const size_t slice_bytes = slice_size * sizeof(T);

  for (int64_t i = 0; i < index_size; ++i) {
    int index_ = p_index[i];
    memcpy(p_output + i * slice_size, p_src + index_ * slice_size, slice_bytes);
  }
}
Z
zhangyang0701 已提交
101

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
void AppendProposals(Tensor *dst, int64_t offset, const Tensor &src) {
  auto *out_data = dst->data<void>();
  auto *to_add_data = src.data<void>();
  size_t size_of_t = framework::SizeOfType(src.type());
  offset *= size_of_t;
  std::memcpy(
      reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(out_data) + offset),
      to_add_data, src.numel() * size_of_t);
}

template <class T>
static inline void BoxCoder(Tensor *all_anchors, Tensor *bbox_deltas,
                            Tensor *variances, Tensor *proposals) {
  T *proposals_data = proposals->mutable_data<T>();

  int64_t row = all_anchors->dims()[0];
  int64_t len = all_anchors->dims()[1];

  auto *bbox_deltas_data = bbox_deltas->data<T>();
  auto *anchor_data = all_anchors->data<T>();
  const T *variances_data = nullptr;
  if (variances) {
    variances_data = variances->data<T>();
  }

  for (int64_t i = 0; i < row; ++i) {
    T anchor_width = anchor_data[i * len + 2] - anchor_data[i * len] + 1.0;
    T anchor_height = anchor_data[i * len + 3] - anchor_data[i * len + 1] + 1.0;

    T anchor_center_x = anchor_data[i * len] + 0.5 * anchor_width;
    T anchor_center_y = anchor_data[i * len + 1] + 0.5 * anchor_height;

    T bbox_center_x = 0, bbox_center_y = 0;
    T bbox_width = 0, bbox_height = 0;

J
jameswu2014 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    /*
        if (variances) {
          bbox_center_x =
              variances_data[i * len] * bbox_deltas_data[i * len] * anchor_width
       + anchor_center_x; bbox_center_y = variances_data[i * len + 1] *
                              bbox_deltas_data[i * len + 1] * anchor_height +
                          anchor_center_y;
          bbox_width = std::exp(std::min<T>(variances_data[i * len + 2] *
                                                bbox_deltas_data[i * len + 2],
                                            kBBoxClipDefault)) *
                       anchor_width;
          bbox_height = std::exp(std::min<T>(variances_data[i * len + 3] *
                                                 bbox_deltas_data[i * len + 3],
                                             kBBoxClipDefault)) *
                        anchor_height;
        } else {
    */
    bbox_center_x = bbox_deltas_data[i * len] * anchor_width + anchor_center_x;
    bbox_center_y =
        bbox_deltas_data[i * len + 1] * anchor_height + anchor_center_y;

    /*
          bbox_width = std::exp(std::min<T>(bbox_deltas_data[i * len + 2],
                                            kBBoxClipDefault)) *
                       anchor_width;
          bbox_height = std::exp(std::min<T>(bbox_deltas_data[i * len + 3],
                                             kBBoxClipDefault)) *
                        anchor_height;
    */
    bbox_width = std::exp(bbox_deltas_data[i * len + 2]) * anchor_width;
    bbox_height = std::exp(bbox_deltas_data[i * len + 3]) * anchor_height;
    //    }
169 170 171

    proposals_data[i * len] = bbox_center_x - bbox_width / 2;
    proposals_data[i * len + 1] = bbox_center_y - bbox_height / 2;
J
jameswu2014 已提交
172 173 174 175 176 177 178 179
    /*
        //wong
        proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2 - 1;
        proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2 - 1;
        //wong
    */
    proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2;
    proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2;
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  }
  // return proposals;
}

template <class T>
static inline void ClipTiledBoxes(const Tensor &im_info, Tensor *boxes) {
  T *boxes_data = boxes->mutable_data<T>();
  const T *im_info_data = im_info.data<T>();
  T zero(0);
  for (int64_t i = 0; i < boxes->numel(); ++i) {
    if (i % 4 == 0) {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[1] - 1), zero);
    } else if (i % 4 == 1) {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[0] - 1), zero);
    } else if (i % 4 == 2) {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[1] - 1), zero);
    } else {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[0] - 1), zero);
    }
  }
}

template <class T>
static inline void FilterBoxes(Tensor *boxes, float min_size,
                               const Tensor &im_info, Tensor *keep) {
  const T *im_info_data = im_info.data<T>();
  T *boxes_data = boxes->mutable_data<T>();
  T im_scale = im_info_data[2];
  keep->Resize({boxes->dims()[0]});
  min_size = std::max(min_size, 1.0f);
  int *keep_data = keep->mutable_data<int>();

  int keep_len = 0;
  for (int i = 0; i < boxes->dims()[0]; ++i) {
    T ws = boxes_data[4 * i + 2] - boxes_data[4 * i] + 1;
    T hs = boxes_data[4 * i + 3] - boxes_data[4 * i + 1] + 1;
    T ws_origin_scale =
        (boxes_data[4 * i + 2] - boxes_data[4 * i]) / im_scale + 1;
    T hs_origin_scale =
        (boxes_data[4 * i + 3] - boxes_data[4 * i + 1]) / im_scale + 1;
    T x_ctr = boxes_data[4 * i] + ws / 2;
    T y_ctr = boxes_data[4 * i + 1] + hs / 2;
    if (ws_origin_scale >= min_size && hs_origin_scale >= min_size &&
        x_ctr <= im_info_data[1] && y_ctr <= im_info_data[0]) {
      keep_data[keep_len++] = i;
    }
  }
  keep->Resize({keep_len});
}

template <class T>
static inline std::vector<std::pair<T, int>> GetSortedScoreIndex(
    const std::vector<T> &scores) {
  std::vector<std::pair<T, int>> sorted_indices;
  sorted_indices.reserve(scores.size());
  for (size_t i = 0; i < scores.size(); ++i) {
    sorted_indices.emplace_back(scores[i], i);
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices.begin(), sorted_indices.end(),
                   [](const std::pair<T, int> &a, const std::pair<T, int> &b) {
                     return a.first < b.first;
                   });
  return sorted_indices;
}

template <class T>
static inline T BBoxArea(const T *box, bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <typename T>
static inline Tensor VectorToTensor(const std::vector<T> &selected_indices,
                                    int selected_num) {
  Tensor keep_nms;
  keep_nms.Resize({selected_num});
  auto *keep_data = keep_nms.mutable_data<T>();
  for (int i = 0; i < selected_num; ++i) {
    keep_data[i] = selected_indices[i];
  }
  return keep_nms;
}

template <class T>
static inline T JaccardOverlap(const T *box1, const T *box2, bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
    const T inter_w = std::max(T(0), inter_xmax - inter_xmin + 1);
    const T inter_h = std::max(T(0), inter_ymax - inter_ymin + 1);
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

template <class T>
static inline Tensor NMS(Tensor *bbox, Tensor *scores, T nms_threshold,
                         float eta) {
  int64_t num_boxes = bbox->dims()[0];
  // 4: [xmin ymin xmax ymax]
  int64_t box_size = bbox->dims()[1];

  std::vector<T> scores_data(num_boxes);
  std::copy_n(scores->data<T>(), num_boxes, scores_data.begin());
  std::vector<std::pair<T, int>> sorted_indices =
      GetSortedScoreIndex<T>(scores_data);

  std::vector<int> selected_indices;
  int selected_num = 0;
  T adaptive_threshold = nms_threshold;
  const T *bbox_data = bbox->data<T>();
  while (sorted_indices.size() != 0) {
    int idx = sorted_indices.back().second;
    bool flag = true;
    for (int kept_idx : selected_indices) {
      if (flag) {
        T overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
                                      bbox_data + kept_idx * box_size, false);
        flag = (overlap <= adaptive_threshold);
      } else {
        break;
      }
    }
    if (flag) {
      selected_indices.push_back(idx);
      ++selected_num;
    }
    sorted_indices.erase(sorted_indices.end() - 1);
    if (flag && eta < 1 && adaptive_threshold > 0.5) {
      adaptive_threshold *= eta;
    }
  }
  return VectorToTensor(selected_indices, selected_num);
}

template <typename T>
std::pair<Tensor, Tensor> ProposalForOneImage(
    const Tensor &im_info_slice, const Tensor &anchors, const Tensor &variances,
    const Tensor &bbox_deltas_slice,  // [M, 4]
    const Tensor &scores_slice,       // [N, 1]
J
jameswu2014 已提交
344 345
    const Tensor &score_index, int pre_nms_top_n, int post_nms_top_n,
    float nms_thresh, float min_size, float eta) {
346 347 348 349 350 351
  auto *scores_data = scores_slice.data<T>();

  // Sort index
  Tensor index_t;
  index_t.Resize({scores_slice.numel()});
  int *index = index_t.mutable_data<int>();
352
  /*for (int i = 0; i < scores_slice.numel(); ++i) {
353
    index[i] = i;
354
  }*/
J
jameswu2014 已提交
355 356 357
  std::memcpy(index, score_index.data<int32_t>(),
              scores_slice.numel() * sizeof(int));

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
  auto compare = [scores_data](const int64_t &i, const int64_t &j) {
    return scores_data[i] > scores_data[j];
  };

  if (pre_nms_top_n <= 0 || pre_nms_top_n >= scores_slice.numel()) {
    std::sort(index, index + scores_slice.numel(), compare);
  } else {
    std::nth_element(index, index + pre_nms_top_n, index + scores_slice.numel(),
                     compare);
    index_t.Resize({pre_nms_top_n});
  }

  Tensor scores_sel, bbox_sel, anchor_sel, var_sel;
  scores_sel.mutable_data<T>({index_t.numel(), 1});
  bbox_sel.mutable_data<T>({index_t.numel(), 4});
  anchor_sel.mutable_data<T>({index_t.numel(), 4});
  var_sel.mutable_data<T>({index_t.numel(), 4});

J
jameswu2014 已提交
376 377 378
  CPUGather<T>(scores_slice, index_t, &scores_sel);
  CPUGather<T>(bbox_deltas_slice, index_t, &bbox_sel);
  CPUGather<T>(anchors, index_t, &anchor_sel);
379 380
  Tensor proposals;
  proposals.mutable_data<T>({index_t.numel(), 4});
J
jameswu2014 已提交
381
  BoxCoder<T>(&anchor_sel, &bbox_sel, nullptr, &proposals);
382 383 384 385 386 387 388 389 390 391

  ClipTiledBoxes<T>(im_info_slice, &proposals);

  Tensor keep;
  FilterBoxes<T>(&proposals, min_size, im_info_slice, &keep);

  Tensor scores_filter;
  bbox_sel.mutable_data<T>({keep.numel(), 4});
  scores_filter.mutable_data<T>({keep.numel(), 1});

J
jameswu2014 已提交
392 393
  CPUGather<T>(proposals, keep, &bbox_sel);
  CPUGather<T>(scores_sel, keep, &scores_filter);
394 395 396 397 398 399 400 401 402 403
  if (nms_thresh <= 0) {
    return std::make_pair(bbox_sel, scores_filter);
  }

  Tensor keep_nms = NMS<T>(&bbox_sel, &scores_filter, nms_thresh, eta);

  if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
    keep_nms.Resize({post_nms_top_n});
  }

J
jameswu2014 已提交
404 405
  // proposals.mutable_data<T>({keep_nms.numel(), 4});//original
  // scores_sel.mutable_data<T>({keep_nms.numel(), 1});//original
406

J
jameswu2014 已提交
407 408 409 410
  proposals.mutable_data<T>({post_nms_top_n, 4});   // wong
  scores_sel.mutable_data<T>({post_nms_top_n, 1});  // wong
  CPUGather<T>(bbox_sel, keep_nms, &proposals);
  CPUGather<T>(scores_filter, keep_nms, &scores_sel);
411 412 413
  return std::make_pair(proposals, scores_sel);
}

Z
zhangyang0701 已提交
414 415
template <>
void ProposalKernel<FPGA, float>::Compute(const ProposalParam<FPGA> &param) {
J
jameswu2014 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
  auto input_score = param.scores_;
  auto input_score_data = input_score->data<half>();
  auto input_score_data_tmp = input_score->data<half>();
  uint32_t score_n, score_height, score_width, score_channels;

  auto input_bbox = param.bbox_deltas_;
  auto input_bbox_data = input_bbox->data<half>();
  auto input_bbox_data_tmp = input_bbox->data<half>();
  uint32_t bbox_n, bbox_height, bbox_width, bbox_channels;

  score_n = (uint32_t)(input_score->dims()[0]);
  score_channels = (uint32_t)(input_score->dims()[1]);
  score_height = (uint32_t)(input_score->dims()[2]);
  score_width = (uint32_t)(input_score->dims()[3]);

  bbox_n = (uint32_t)(input_bbox->dims()[0]);
  bbox_channels = (uint32_t)(input_bbox->dims()[1]);
  bbox_height = (uint32_t)(input_bbox->dims()[2]);
  bbox_width = (uint32_t)(input_bbox->dims()[3]);

  // score_tmp->init(typeid(half));
  std::shared_ptr<Tensor> score_tmp = std::make_shared<Tensor>();
  score_tmp->Resize(param.scores_->dims());
  score_tmp->mutable_data<half>();

  std::shared_ptr<Tensor> bbox_tmp = std::make_shared<Tensor>();
  bbox_tmp->Resize(param.bbox_deltas_->dims());
  bbox_tmp->mutable_data<half>();

  auto score_tmp_data = score_tmp->data<half>();
  auto bbox_tmp_data = bbox_tmp->data<half>();
  int64_t amount_per_side = score_width * score_height;
  int idx = 0;
  fpga::fpga_invalidate(
      input_score_data_tmp,
      score_height * score_width * score_channels * sizeof(half));
  for (int h = 0; h < score_height; h++) {
    for (int w = 0; w < score_width; w++) {
      for (int c = 0; c < score_channels; c++) {
        idx++;
        // DLOG  << "wong input_score: "<<
        // paddle_mobile::fpga::fp16_2_fp32(input_score_data[idx]);
        *(score_tmp_data + c * amount_per_side + score_width * h + w) =
            (*(input_score_data_tmp++));
      }
    }
  }
  amount_per_side = bbox_width * bbox_height;
  fpga::fpga_invalidate(input_bbox_data_tmp, bbox_height * bbox_width *
                                                 bbox_channels * sizeof(half));
  for (int h = 0; h < bbox_height; h++) {
    for (int w = 0; w < bbox_width; w++) {
      for (int c = 0; c < bbox_channels; c++) {
        idx++;
        // DLOG  << "wong input_score: "<<
        // paddle_mobile::fpga::fp16_2_fp32(input_score_data[idx]);
        *(bbox_tmp_data + c * amount_per_side + bbox_width * h + w) =
            (*(input_bbox_data_tmp++));
      }
    }
  }
  struct paddle_mobile::fpga::BypassArgs temp_score_arg;
  struct paddle_mobile::fpga::BypassArgs temp_bbox_arg;
  temp_score_arg = param.score_arg;
  temp_score_arg.image.address = score_tmp->data<half>();

  temp_bbox_arg = param.bbox_arg;
  temp_bbox_arg.image.address = bbox_tmp->data<half>();
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
  auto score_tensor = param.float_score.get();
  fpga::PerformBypass(param.score_arg);
  fpga::fpga_invalidate(score_tensor->data<float>(),
                        score_tensor->numel() * sizeof(float));

  auto bbox_tensor = param.float_bbox.get();
  fpga::PerformBypass(param.bbox_arg);
  fpga::fpga_invalidate(bbox_tensor->data<float>(),
                        bbox_tensor->numel() * sizeof(float));

  auto *scores = param.float_score.get();
  auto *bbox_deltas = param.float_bbox.get();
  auto *im_info = param.im_info_;
  auto anchors = *param.anchors_;
  auto variances = *param.variances_;

  auto *rpn_rois = param.rpn_rois_;
  auto *rpn_roi_probs = param.rpn_probs_;

503 504
  auto score_index = *(param.score_index_.get());

505
  int pre_nms_top_n = param.pre_nms_topn_;
J
jameswu2014 已提交
506
  int post_nms_top_n = 100;  // param.post_nms_topn_;
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
  float nms_thresh = param.nms_thresh_;
  float min_size = param.min_size_;
  float eta = param.eta_;

  auto &scores_dim = scores->dims();
  int64_t num = scores_dim[0];
  int64_t c_score = scores_dim[1];
  int64_t h_score = scores_dim[2];
  int64_t w_score = scores_dim[3];

  auto &bbox_dim = bbox_deltas->dims();
  int64_t c_bbox = bbox_dim[1];
  int64_t h_bbox = bbox_dim[2];
  int64_t w_bbox = bbox_dim[3];

  //
J
jameswu2014 已提交
523 524
  rpn_rois->mutable_data<float>({bbox_deltas->numel(), 4});
  rpn_roi_probs->mutable_data<float>({scores->numel(), 1});
525 526 527 528 529

  framework::LoD lod;
  lod.resize(1);
  auto &lod0 = lod[0];
  lod0.push_back(0);
J
jameswu2014 已提交
530 531
  anchors.Resize({anchors.numel(), 4});
  variances.Resize({variances.numel(), 4});
532 533 534 535

  int64_t num_proposals = 0;
  for (int64_t i = 0; i < num; ++i) {
    Tensor im_info_slice = im_info->Slice(i, i + 1);
J
jameswu2014 已提交
536 537
    Tensor bbox_deltas_slice = (*bbox_tensor).Slice(i, i + 1);
    Tensor scores_slice = (*score_tensor).Slice(i, i + 1);
538

J
jameswu2014 已提交
539
    bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox, 4});
540 541 542
    scores_slice.Resize({h_score * w_score * c_score, 1});

    std::pair<Tensor, Tensor> tensor_pair = ProposalForOneImage<float>(
J
jameswu2014 已提交
543 544
        im_info_slice, anchors, variances, bbox_deltas_slice, scores_slice,
        score_index, pre_nms_top_n, post_nms_top_n, nms_thresh, min_size, eta);
545 546 547 548 549 550 551 552 553 554 555 556
    Tensor &proposals = tensor_pair.first;
    Tensor &scores = tensor_pair.second;

    AppendProposals(rpn_rois, 4 * num_proposals, proposals);
    AppendProposals(rpn_roi_probs, num_proposals, scores);
    num_proposals += proposals.dims()[0];
    lod0.push_back(num_proposals);
  }
  rpn_rois->set_lod(lod);
  rpn_roi_probs->set_lod(lod);
  rpn_rois->Resize({num_proposals, 4});
  rpn_roi_probs->Resize({num_proposals, 1});
Z
zhangyang0701 已提交
557 558 559 560 561 562
}

}  // namespace operators
}  // namespace paddle_mobile

#endif  // PROPOSAL_OP