layout_compute.cc 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/cuda/layout_compute.h"
16
#include <vector>
17 18 19 20 21 22 23 24
#include "lite/backends/cuda/math/transpose.h"
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {

25 26 27 28 29 30 31
inline DDim trim_singular_dims(const DDim& dims) {
  auto actual_dims_size = dims.size();
  for (; actual_dims_size != 0; --actual_dims_size) {
    if (dims[actual_dims_size - 1] != 1) break;
  }
  std::vector<int64_t> trim_dims;
  trim_dims.resize(actual_dims_size);
W
Wilber 已提交
32
  for (size_t i = 0; i < actual_dims_size; ++i) {
33 34 35 36 37 38 39 40
    trim_dims[i] = dims[i];
  }
  if (trim_dims.size() == 0) {
    return DDim();
  }
  return DDim(trim_dims);
}

Z
Zhaolong Xing 已提交
41 42 43
#define NCHWTONHWC(type)                                                  \
  auto& param = this->template Param<param_t>();                          \
  auto& ctx = this->ctx_->template As<CUDAContext>();                     \
W
Wilber 已提交
44
  auto stream = ctx.exec_stream();                                        \
Z
Zhaolong Xing 已提交
45 46
  auto input = param.x->template data<type>();                            \
  auto input_dim = param.x->dims();                                       \
47 48 49 50 51
  DDim input_trim_dim = trim_singular_dims(input_dim);                    \
  if (input_trim_dim.size() == 1) {                                       \
    param.y->CopyDataFrom(*param.x);                                      \
    return;                                                               \
  }                                                                       \
Z
Zhaolong Xing 已提交
52 53 54 55 56 57 58 59
  CHECK(input_dim.size() == 4)                                            \
      << "NCHW to NHWC should guarantee that the input dims should be 4"; \
  int n = input_dim[0];                                                   \
  int c = input_dim[1];                                                   \
  int h = input_dim[2];                                                   \
  int w = input_dim[3];                                                   \
  param.y->Resize({n, h, w, c});                                          \
  auto output = param.y->template mutable_data<type>(TARGET(kCUDA));      \
W
Wilber 已提交
60
  trans.NCHW2NHWC(n, c, h* w, input, output, &stream);
Z
Zhaolong Xing 已提交
61 62 63 64

#define NHWCTONCHW(type)                                                  \
  auto& param = this->template Param<param_t>();                          \
  auto& ctx = this->ctx_->template As<CUDAContext>();                     \
W
Wilber 已提交
65
  auto stream = ctx.exec_stream();                                        \
Z
Zhaolong Xing 已提交
66 67
  auto input = param.x->template data<type>();                            \
  auto input_dim = param.x->dims();                                       \
68 69 70 71 72
  DDim input_trim_dim = trim_singular_dims(input_dim);                    \
  if (input_trim_dim.size() == 1) {                                       \
    param.y->CopyDataFrom(*param.x);                                      \
    return;                                                               \
  }                                                                       \
Z
Zhaolong Xing 已提交
73 74 75 76 77 78 79 80
  CHECK(input_dim.size() == 4)                                            \
      << "NHWC to NCHW should guarantee that the input dims should be 4"; \
  int n = input_dim[0];                                                   \
  int h = input_dim[1];                                                   \
  int w = input_dim[2];                                                   \
  int c = input_dim[3];                                                   \
  param.y->Resize({n, c, h, w});                                          \
  auto output = param.y->template mutable_data<type>(TARGET(kCUDA));      \
W
Wilber 已提交
81
  trans.NHWC2NCHW(n, c, h* w, input, output, &stream);
Z
Zhaolong Xing 已提交
82 83 84 85 86 87 88 89

void NCHWToNHWCCompute::Run() { NCHWTONHWC(float) }

void NCHWToNHWCComputeInt8::Run() { NCHWTONHWC(int8_t) }

void NHWCToNCHWCompute::Run() { NHWCTONCHW(float) }

void NHWCToNCHWComputeInt8::Run() { NHWCTONCHW(int8_t) }
90 91 92 93 94 95 96 97 98 99

}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(layout,
                     kCUDA,
                     kFloat,
                     kNCHW,
Z
Zhaolong Xing 已提交
100
                     paddle::lite::kernels::cuda::NCHWToNHWCCompute,
101
                     nchw2nhwc)
Z
Zhaolong Xing 已提交
102
    .BindInput("Input",
103 104 105 106 107 108 109 110 111 112 113 114
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(layout,
                     kCUDA,
                     kFloat,
Z
Zhaolong Xing 已提交
115 116
                     kNCHW,
                     paddle::lite::kernels::cuda::NHWCToNCHWCompute,
117
                     nhwc2nchw)
Z
Zhaolong Xing 已提交
118
    .BindInput("Input",
119 120 121 122 123 124 125 126 127 128 129 130 131
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
    .Finalize();

REGISTER_LITE_KERNEL(layout,
                     kCUDA,
                     kInt8,
                     kNCHW,
Z
Zhaolong Xing 已提交
132 133 134
                     paddle::lite::kernels::cuda::NCHWToNHWCComputeInt8,
                     int8_nchw2nhwc)
    .BindInput("Input",
135 136 137 138 139 140 141 142 143 144 145 146
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kInt8),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(layout,
                     kCUDA,
                     kInt8,
Z
Zhaolong Xing 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
                     kNCHW,
                     paddle::lite::kernels::cuda::NHWCToNCHWComputeInt8,
                     int8_nhwc2nchw)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kInt8),
                                       DATALAYOUT(kNCHW))})
    .Finalize();

REGISTER_LITE_KERNEL(layout_once,
                     kCUDA,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::cuda::NCHWToNHWCCompute,
                     nchw2nhwc)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(layout_once,
                     kCUDA,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::cuda::NHWCToNCHWCompute,
181
                     nhwc2nchw)
Z
Zhaolong Xing 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
    .Finalize();

REGISTER_LITE_KERNEL(layout_once,
                     kCUDA,
                     kInt8,
                     kNCHW,
                     paddle::lite::kernels::cuda::NCHWToNHWCComputeInt8,
                     int8_nchw2nhwc)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kInt8),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(layout_once,
                     kCUDA,
                     kInt8,
                     kNCHW,
                     paddle::lite::kernels::cuda::NHWCToNCHWComputeInt8,
                     int8_nhwc2nchw)
    .BindInput("Input",
215 216 217 218 219 220 221 222
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kInt8),
                                       DATALAYOUT(kNCHW))})
    .Finalize();