calib_compute.cu 5.2 KB
Newer Older
Z
Zhen Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
Z
Zhaolong Xing 已提交
16
#include "lite/backends/cuda/math/utils.h"
Z
Zhen Wang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/kernels/cuda/calib_compute.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {

__global__ void Fp32ToInt8Kernel(const int num,
                                 const float scale,
                                 const float* input,
                                 int8_t* output) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  if (index < num) {
Z
Zhaolong Xing 已提交
32
    output[index] = lite::cuda::math::from_float<int8_t>(input[index] / scale);
Z
Zhen Wang 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  }
}

__global__ void Int8ToFp32Kernel(const int num,
                                 const float scale,
                                 const int8_t* input,
                                 float* output) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  if (index < num) {
    output[index] = input[index] * scale;
  }
}

void CalibComputeFp32ToInt8::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->As<CUDAContext>();
  auto stream = ctx.exec_stream();

  auto scale = param.scale;
  const auto* din = param.input->data<float>();
  auto* dout = param.output->mutable_data<int8_t>(TARGET(kCUDA));
  int num = static_cast<int>(param.input->numel());
  int threads = 1024;
  int blocks = (num + threads - 1) / threads;
  Fp32ToInt8Kernel<<<blocks, threads, 0, stream>>>(num, scale, din, dout);
  cudaError_t error = cudaGetLastError();
  CHECK(error == cudaSuccess) << cudaGetErrorString(error);
}

void CalibComputeInt8ToFp32::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->As<CUDAContext>();
  auto stream = ctx.exec_stream();

  auto scale = param.scale;
  const auto* din = param.input->data<int8_t>();
  auto* dout = param.output->mutable_data<float>(TARGET(kCUDA));
  int num = static_cast<int>(param.input->numel());
  int threads = 1024;
  int blocks = (num + threads - 1) / threads;
  Int8ToFp32Kernel<<<blocks, threads, 0, stream>>>(num, scale, din, dout);
  cudaError_t error = cudaGetLastError();
  CHECK(error == cudaSuccess) << cudaGetErrorString(error);
}

}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(calib,
                     kCUDA,
Z
Zhaolong Xing 已提交
85
                     kFloat,
Z
Zhen Wang 已提交
86 87 88 89
                     kNCHW,
                     paddle::lite::kernels::cuda::CalibComputeFp32ToInt8,
                     fp32_to_int8)
    .BindInput("Input",
Z
Zhaolong Xing 已提交
90 91 92 93 94 95 96
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kAny))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kInt8),
                                       DATALAYOUT(kAny))})
Z
Zhen Wang 已提交
97 98 99 100
    .Finalize();

REGISTER_LITE_KERNEL(calib,
                     kCUDA,
Z
Zhaolong Xing 已提交
101
                     kFloat,
Z
Zhen Wang 已提交
102 103 104 105
                     kNCHW,
                     paddle::lite::kernels::cuda::CalibComputeInt8ToFp32,
                     int8_to_fp32)
    .BindInput("Input",
Z
Zhaolong Xing 已提交
106 107 108
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kAny))})
Z
Zhen Wang 已提交
109
    .BindOutput("Out",
Z
Zhaolong Xing 已提交
110 111 112
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kAny))})
Z
Zhen Wang 已提交
113 114 115 116
    .Finalize();

REGISTER_LITE_KERNEL(calib_once,
                     kCUDA,
Z
Zhaolong Xing 已提交
117
                     kFloat,
Z
Zhen Wang 已提交
118 119 120 121
                     kNCHW,
                     paddle::lite::kernels::cuda::CalibComputeFp32ToInt8,
                     fp32_to_int8)
    .BindInput("Input",
Z
Zhaolong Xing 已提交
122 123 124 125 126 127 128
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kAny))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kInt8),
                                       DATALAYOUT(kAny))})
Z
Zhen Wang 已提交
129 130 131
    .Finalize();
REGISTER_LITE_KERNEL(calib_once,
                     kCUDA,
Z
Zhaolong Xing 已提交
132
                     kFloat,
Z
Zhen Wang 已提交
133 134 135 136
                     kNCHW,
                     paddle::lite::kernels::cuda::CalibComputeInt8ToFp32,
                     int8_to_fp32)
    .BindInput("Input",
Z
Zhaolong Xing 已提交
137 138 139
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kAny))})
Z
Zhen Wang 已提交
140
    .BindOutput("Out",
Z
Zhaolong Xing 已提交
141 142 143
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kAny))})
Z
Zhen Wang 已提交
144
    .Finalize();