test_elementwise_add_op.cpp 7.1 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once
#include "../test_include.h"
E
eclipsess 已提交
21
#include "operators/elementwise_add_op.h"
E
eclipsess 已提交
22 23

namespace paddle_mobile {
E
eclipsess 已提交
24 25 26 27
namespace framework {

template <typename Dtype> class TestElementwiseAddOp {
  public:
E
eclipsess 已提交
28
    explicit TestElementwiseAddOp(const Program<Dtype> p) : program_(p) {
E
eclipsess 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
        if (use_optimize_) {
            to_predict_program_ = program_.optimizeProgram;
        } else {
            to_predict_program_ = program_.originProgram;
        }

        const std::vector<std::shared_ptr<BlockDesc>> blocks =
            to_predict_program_->Blocks();
        //  DLOG << " **block size " << blocks.size();
        for (int i = 0; i < blocks.size(); ++i) {
            std::shared_ptr<BlockDesc> block_desc = blocks[i];
            std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
            //    DLOG << " ops " << ops.size();
            for (int j = 0; j < ops.size(); ++j) {
                std::shared_ptr<OpDesc> op = ops[j];
                //                        if (op->Type() ==
                //                        "elementwise_add") {
                //                            if
                //                            (op->GetAttrMap().at("axis").Get<int>()
                //                            != -1) {
                //                                DLOG << "attr: axis =
                //                                "
                //                                     <<
                //                                     op->GetAttrMap().at("axis").Get<int>();
                //                            }
                //                        }
                //                        DLOG << "op:" << op->Type();
                if (op->Type() == "elementwise_add" &&
                    op->Input("X")[0] == "batch_norm_2.tmp_2") {
                    DLOG << " elementwise_add attr size: "
                         << op->GetAttrMap().size();
                    DLOG << " inputs size: " << op->GetInputs().size();
                    DLOG << " outputs size: " << op->GetOutputs().size();
                    DLOG << " Input X is : " << op->Input("X")[0];
                    DLOG << " Input Y is : " << op->Input("Y")[0];
                    DLOG << " Output Out is : " << op->Output("Out")[0];
                    Attribute axis_attr = op->GetAttrMap().at("axis");
                    int axis = axis_attr.Get<int>();
                    DLOG << " Attr axis is : " << axis;

                    std::shared_ptr<operators::ElementwiseAddOp<Dtype, float>>
                        add = std::make_shared<
                            operators::ElementwiseAddOp<Dtype, float>>(
                            op->Type(), op->GetInputs(), op->GetOutputs(),
                            op->GetAttrMap(), program_.scope);
                    ops_of_block_[*block_desc.get()].push_back(add);
E
eclipsess 已提交
75 76
                }
            }
E
eclipsess 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        }
    }

    std::shared_ptr<Tensor> predict_add(Tensor &t1, Tensor &t2) {
        // feed
        auto scope = program_.scope;
        Variable *x_feed_value = scope->Var("batch_norm_2.tmp_2");
        auto tensor_x = x_feed_value->GetMutable<Tensor>();
        tensor_x->ShareDataWith(t1);

        Variable *y_feed_value = scope->Var("batch_norm_0.tmp_3");
        auto tensor_y = y_feed_value->GetMutable<Tensor>();
        tensor_y->ShareDataWith(t2);

        Variable *con_output = scope->Var("elementwise_add_0.tmp_0");
E
eclipsess 已提交
92
        auto *output_tensor = con_output->GetMutable<Tensor>();
E
eclipsess 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        output_tensor->mutable_data<float>({1, 3, 224, 224});
        //  DLOG << typeid(output_tensor).name();
        //  DLOG << "output_tensor dims: " << output_tensor->dims();

        std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
        out_tensor.reset(output_tensor);

        predict_add(t1, t2, 0);
        return out_tensor;
    }

  private:
    const framework::Program<Dtype> program_;
    std::shared_ptr<ProgramDesc> to_predict_program_;
    std::map<framework::BlockDesc,
             std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
        ops_of_block_;
    bool use_optimize_ = false;

    void predict_add(const Tensor &t1, const Tensor &t2, int block_id) {
        std::shared_ptr<BlockDesc> to_predict_block =
            to_predict_program_->Block(block_id);
        for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size();
             ++j) {
            auto op = ops_of_block_[*to_predict_block.get()][j];
            DLOG << "op -> run()";
            op->Run();
        }
    }
};

template class TestElementwiseAddOp<CPU>;
} // namespace framework
E
eclipsess 已提交
126 127 128 129 130 131
} // namespace paddle_mobile
int main() {
    DLOG << "----------**********----------";
    DLOG << "begin to run ElementAddOp Test";
    paddle_mobile::Loader<paddle_mobile::CPU> loader;
    auto program =
E
eclipsess 已提交
132
        loader.Load(std::string("../../test/models/"
E
eclipsess 已提交
133 134 135 136 137 138
                                "image_classification_resnet.inference.model"));

    /// input x (1,3,224,224)
    paddle_mobile::framework::Tensor inputx;
    SetupTensor<float>(&inputx, {1, 3, 224, 224}, static_cast<float>(0),
                       static_cast<float>(1));
E
eclipsess 已提交
139
    auto *inputx_ptr = inputx.data<float>();
E
eclipsess 已提交
140 141 142 143
    /// input y (224,)
    paddle_mobile::framework::Tensor inputy;
    SetupTensor<float>(&inputy, {224}, static_cast<float>(0),
                       static_cast<float>(1));
E
eclipsess 已提交
144
    auto *inputy_ptr = inputy.data<float>();
E
eclipsess 已提交
145 146 147 148 149

    paddle_mobile::framework::TestElementwiseAddOp<paddle_mobile::CPU>
        testElementwiseAddOp(program);

    auto output_add = testElementwiseAddOp.predict_add(inputx, inputy);
E
eclipsess 已提交
150
    auto *output_add_ptr = output_add->data<float>();
E
eclipsess 已提交
151 152 153 154 155 156 157 158 159 160 161 162
    //            for (int j = 0; j < output_add->numel(); ++j) {
    //                DLOG << "value of output: " << output_add_ptr[j];
    //            }

    /// output (1,3,224,224)
    DLOG << "output memory size : " << output_add->memory_size();
    DLOG << "output numel : " << output_add->numel();

    DLOG << inputx_ptr[226] << " + " << inputy_ptr[2] << " = "
         << output_add_ptr[226];
    return 0;
}