pool_kernel.cpp 7.5 KB
Newer Older
H
Hao Han 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
S
sharper 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef POOL_OP

#pragma once

#include "operators/kernel/pool_kernel.h"
#ifdef PADDLE_MOBILE_MALI_GPU
#include "acl_operator.h"
#include "framework/operator.h"
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {

template <typename DeviceType, typename T>
class AclPoolOp : public acl::ACLOperator {
 public:
  AclPoolOp() {
    this->force_bypass_acl_path_ =
        bypass_acl_class_layer & FLAGS_ENABLE_ACL_POOLING;
  }
  ~AclPoolOp() = default;
  AclPoolOp(const AclPoolOp&) = delete;
  AclPoolOp& operator=(const AclPoolOp&) = delete;
  AclPoolOp(AclPoolOp&&) = delete;
  AclPoolOp& operator=(AclPoolOp&&) = delete;

  acl::AclParameters& getargs() { return args; }
N
nhzlx 已提交
42
  void InitAclLayer(const PoolParam<DeviceType>& param) {
S
sharper 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    setTargetHint(acl::TargetHint::OPENCL);
    arm_compute::TensorShape input_shape(args.in_cols, args.in_rows,
                                         args.in_depth);
    arm_compute::TensorShape output_shape(args.out_cols, args.out_rows,
                                          args.out_depth);
    // arm_compute::TensorShape weights_shape(
    // args.filter_cols, args.filter_rows, args.in_depth, args.out_depth);
    // arm_compute::TensorShape biases_shape(args.out_depth);
    arm_compute::PoolingLayerInfo pool_info;

    if (args.pool_type == "max") {
      pool_info = arm_compute::PoolingLayerInfo(
          arm_compute::PoolingType::MAX, args.filter_rows,
          arm_compute::PadStrideInfo(args.stride_cols, args.stride_rows,
                                     args.pad_cols, args.pad_rows,
                                     arm_compute::DimensionRoundingType::CEIL));
    } else {
      pool_info = arm_compute::PoolingLayerInfo(
          arm_compute::PoolingType::AVG, args.filter_rows,
          arm_compute::PadStrideInfo(args.stride_cols, args.stride_rows,
                                     args.pad_cols, args.pad_rows,
                                     arm_compute::DimensionRoundingType::CEIL));
    }

    if (is_operator_init_done(input_shape)) return;
    set_operator_init_done();
    this->force_bypass_acl_path_ = false;

    //[width, height, IFM]
    new_tensor(input(), input_shape, args.input_data);
    //[width, height, OFM]
    new_tensor(output(), output_shape, args.output_data);

    acl_configure(pooling, this, pool_info);
  }

  void RunAcl(void* input, void* output) {
    acl::ACLOperator::acl_run(input, output);
  }
N
nhzlx 已提交
82
  bool Bypass_acl(const PoolParam<DeviceType>& param) {
S
sharper 已提交
83 84
    bool bypass_acl = false;
    AclParametersByContext(param);
H
Hao Han 已提交
85
    InitAclLayer(param);
S
sharper 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    // for performance, more groups impact GPU performance
    if (this->force_bypass_acl_path_) {
      bypass_acl = true;
    }
    if (args.pool_type != "max" && args.pool_type != "avg") {
      bypass_acl = true;
    }
    if (args.filter_rows != args.filter_cols) {
      bypass_acl = true;
    }
    // if (args.filter_rows!=2 && args.filter_rows!=3) {
    //     bypass_acl = true;
    // }
    return bypass_acl;
  }

 private:
N
nhzlx 已提交
103
  void AclParametersByContext(const PoolParam<DeviceType>& param) {
S
sharper 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    const Tensor* in_x = param.Input();
    Tensor* out = param.Output();
    std::string pooling_type = param.PoolingType();

    std::vector<int> ksize = param.Ksize();

    std::vector<int> strides = param.Strides();

    std::vector<int> paddings = param.Paddings();

    bool is_global_pooling = param.isGlobalPooling();

    const T* input_data = in_x->data<T>();
    T* output_data = out->mutable_data<T>();

    args.input_data = (void*)input_data;
    args.output_data = (void*)output_data;

    args.is_global_pool = is_global_pooling;
    args.pool_type = pooling_type;

    args.filter_rows = ksize[0];
    args.filter_cols = ksize[1];
    args.dim = ksize.size();

    // NCHW
    args.batch = in_x->dims()[0];
    args.in_depth = in_x->dims()[1];
    args.in_rows = in_x->dims()[2];
    args.in_cols = in_x->dims()[3];
    // std::cout <<"In N: " << args.batch << " C: " <<  args.in_depth
    //  << " H: " << args.in_rows << " W: " << args.in_cols << "\n";
    // NCHW
    // std::cout <<"Out N: " << static_cast<int>(output->dims()[0])
    //  << " C: " <<  args.out_depth
    //  << " H: " << args.out_rows << " W: " << args.out_cols << "\n";
    // MCHW = OIHW
    // std::cout <<"Filter O: " << static_cast<int>(filter->dims()[0])
    //  << " I: " <<  static_cast<int>(filter->dims()[1])
    //  << " H: " << args.filter_rows << " W: " << args.filter_cols << "\n";

    // strides(h_stride, w_stride)
    args.stride_rows = strides[0];
    args.stride_cols = strides[1];
    // std::cout <<"PoolingType: " << args.pool_type << "\n";
    // std::cout <<"Stride H: " << args.stride_rows << " W: " <<
    // args.stride_cols << "\n";

    // paddings(h_pad, w_pad)
    args.pad_rows = paddings[0];
    args.pad_cols = paddings[1];
    // std::cout <<"Pad H: " << args.pad_rows << " W: " << args.pad_cols <<
    // "\n";

    args.out_depth = args.in_depth;
    // args.out_rows = out->dims()[2];
    // args.out_cols = out->dims()[3];
    args.out_rows = static_cast<int>(ceil(static_cast<float>(args.in_rows +
                                                             2 * args.pad_rows -
                                                             args.filter_rows) /
                                          args.stride_rows)) +
                    1;
    args.out_cols = static_cast<int>(ceil(static_cast<float>(args.in_cols +
                                                             2 * args.pad_cols -
                                                             args.filter_cols) /
                                          args.stride_cols)) +
                    1;

    if (is_global_pooling) {
      args.filter_rows = args.in_rows;
      args.filter_cols = args.in_cols;
      args.pad_rows = 0;
      args.pad_cols = 0;
    }
  }
  acl::AclParameters args;
};

template <>
N
nhzlx 已提交
183
bool PoolKernel<GPU_MALI, float>::Init(PoolParam<GPU_MALI>* param) {
S
sharper 已提交
184 185 186 187 188 189
  AclPoolOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclPoolOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    acl_op = new AclPoolOp<GPU_MALI, float>();
    this->SetAclOp((void*)acl_op, (void*)this);
  }
H
halsay 已提交
190
  if (acl_op->Bypass_acl(*param)) {
H
Hao Han 已提交
191 192 193
    std::cout << "init acl failed" << std::endl;
    return false;
  }
S
sharper 已提交
194 195 196 197
  return true;
}

template <>
198
void PoolKernel<GPU_MALI, float>::Compute(const PoolParam<GPU_MALI>& param) {
S
sharper 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  std::cout << "init acl" << std::endl;
  AclPoolOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclPoolOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    return;
  }
  acl::AclParameters& args = acl_op->getargs();
  const float* input_data = (const float*)args.input_data;
  const float* output_data = (const float*)args.output_data;
  for (int n = 0; n < args.batch; ++n) {
    acl_op->RunAcl((void*)input_data, (void*)output_data);
    input_data += args.in_depth * args.in_cols * args.in_rows;
    output_data += args.in_depth * args.out_cols * args.out_rows;
  }
}

template class PoolKernel<GPU_MALI, float>;
}  // namespace operators
}  // namespace paddle_mobile

#endif
#endif