pool_kernel.cpp 7.5 KB
Newer Older
H
Hao Han 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
S
sharper 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef POOL_OP

#pragma once

#include "operators/kernel/pool_kernel.h"
#ifdef PADDLE_MOBILE_MALI_GPU
#include "acl_operator.h"
#include "framework/operator.h"
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {

template <typename DeviceType, typename T>
class AclPoolOp : public acl::ACLOperator {
 public:
  AclPoolOp() {
    this->force_bypass_acl_path_ =
        bypass_acl_class_layer & FLAGS_ENABLE_ACL_POOLING;
  }
  ~AclPoolOp() = default;
  AclPoolOp(const AclPoolOp&) = delete;
  AclPoolOp& operator=(const AclPoolOp&) = delete;
  AclPoolOp(AclPoolOp&&) = delete;
  AclPoolOp& operator=(AclPoolOp&&) = delete;

  acl::AclParameters& getargs() { return args; }
  void InitAclLayer(const PoolParam& param) {
    setTargetHint(acl::TargetHint::OPENCL);
    arm_compute::TensorShape input_shape(args.in_cols, args.in_rows,
                                         args.in_depth);
    arm_compute::TensorShape output_shape(args.out_cols, args.out_rows,
                                          args.out_depth);
    // arm_compute::TensorShape weights_shape(
    // args.filter_cols, args.filter_rows, args.in_depth, args.out_depth);
    // arm_compute::TensorShape biases_shape(args.out_depth);
    arm_compute::PoolingLayerInfo pool_info;

    if (args.pool_type == "max") {
      pool_info = arm_compute::PoolingLayerInfo(
          arm_compute::PoolingType::MAX, args.filter_rows,
          arm_compute::PadStrideInfo(args.stride_cols, args.stride_rows,
                                     args.pad_cols, args.pad_rows,
                                     arm_compute::DimensionRoundingType::CEIL));
    } else {
      pool_info = arm_compute::PoolingLayerInfo(
          arm_compute::PoolingType::AVG, args.filter_rows,
          arm_compute::PadStrideInfo(args.stride_cols, args.stride_rows,
                                     args.pad_cols, args.pad_rows,
                                     arm_compute::DimensionRoundingType::CEIL));
    }

    if (is_operator_init_done(input_shape)) return;
    set_operator_init_done();
    this->force_bypass_acl_path_ = false;

    //[width, height, IFM]
    new_tensor(input(), input_shape, args.input_data);
    //[width, height, OFM]
    new_tensor(output(), output_shape, args.output_data);

    acl_configure(pooling, this, pool_info);
  }

  void RunAcl(void* input, void* output) {
    acl::ACLOperator::acl_run(input, output);
  }
  bool Bypass_acl(const PoolParam& param) {
    bool bypass_acl = false;
    AclParametersByContext(param);
H
Hao Han 已提交
85
    InitAclLayer(param);
S
sharper 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    // for performance, more groups impact GPU performance
    if (this->force_bypass_acl_path_) {
      bypass_acl = true;
    }
    if (args.pool_type != "max" && args.pool_type != "avg") {
      bypass_acl = true;
    }
    if (args.filter_rows != args.filter_cols) {
      bypass_acl = true;
    }
    // if (args.filter_rows!=2 && args.filter_rows!=3) {
    //     bypass_acl = true;
    // }
    return bypass_acl;
  }

 private:
  void AclParametersByContext(const PoolParam& param) {
    const Tensor* in_x = param.Input();
    Tensor* out = param.Output();
    std::string pooling_type = param.PoolingType();

    std::vector<int> ksize = param.Ksize();

    std::vector<int> strides = param.Strides();

    std::vector<int> paddings = param.Paddings();

    bool is_global_pooling = param.isGlobalPooling();

    const T* input_data = in_x->data<T>();
    T* output_data = out->mutable_data<T>();

    args.input_data = (void*)input_data;
    args.output_data = (void*)output_data;

    args.is_global_pool = is_global_pooling;
    args.pool_type = pooling_type;

    args.filter_rows = ksize[0];
    args.filter_cols = ksize[1];
    args.dim = ksize.size();

    // NCHW
    args.batch = in_x->dims()[0];
    args.in_depth = in_x->dims()[1];
    args.in_rows = in_x->dims()[2];
    args.in_cols = in_x->dims()[3];
    // std::cout <<"In N: " << args.batch << " C: " <<  args.in_depth
    //  << " H: " << args.in_rows << " W: " << args.in_cols << "\n";
    // NCHW
    // std::cout <<"Out N: " << static_cast<int>(output->dims()[0])
    //  << " C: " <<  args.out_depth
    //  << " H: " << args.out_rows << " W: " << args.out_cols << "\n";
    // MCHW = OIHW
    // std::cout <<"Filter O: " << static_cast<int>(filter->dims()[0])
    //  << " I: " <<  static_cast<int>(filter->dims()[1])
    //  << " H: " << args.filter_rows << " W: " << args.filter_cols << "\n";

    // strides(h_stride, w_stride)
    args.stride_rows = strides[0];
    args.stride_cols = strides[1];
    // std::cout <<"PoolingType: " << args.pool_type << "\n";
    // std::cout <<"Stride H: " << args.stride_rows << " W: " <<
    // args.stride_cols << "\n";

    // paddings(h_pad, w_pad)
    args.pad_rows = paddings[0];
    args.pad_cols = paddings[1];
    // std::cout <<"Pad H: " << args.pad_rows << " W: " << args.pad_cols <<
    // "\n";

    args.out_depth = args.in_depth;
    // args.out_rows = out->dims()[2];
    // args.out_cols = out->dims()[3];
    args.out_rows = static_cast<int>(ceil(static_cast<float>(args.in_rows +
                                                             2 * args.pad_rows -
                                                             args.filter_rows) /
                                          args.stride_rows)) +
                    1;
    args.out_cols = static_cast<int>(ceil(static_cast<float>(args.in_cols +
                                                             2 * args.pad_cols -
                                                             args.filter_cols) /
                                          args.stride_cols)) +
                    1;

    if (is_global_pooling) {
      args.filter_rows = args.in_rows;
      args.filter_cols = args.in_cols;
      args.pad_rows = 0;
      args.pad_cols = 0;
    }
  }
  acl::AclParameters args;
};

template <>
bool PoolKernel<GPU_MALI, float>::Init(const PoolParam& param) const {
  AclPoolOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclPoolOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    acl_op = new AclPoolOp<GPU_MALI, float>();
    this->SetAclOp((void*)acl_op, (void*)this);
  }
H
Hao Han 已提交
190 191 192 193
  if (acl_op->Bypass_acl(param)) {
    std::cout << "init acl failed" << std::endl;
    return false;
  }
S
sharper 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  return true;
}

template <>
void PoolKernel<GPU_MALI, float>::Compute(const PoolParam& param) const {
  std::cout << "init acl" << std::endl;
  AclPoolOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclPoolOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    return;
  }
  acl::AclParameters& args = acl_op->getargs();
  const float* input_data = (const float*)args.input_data;
  const float* output_data = (const float*)args.output_data;
  for (int n = 0; n < args.batch; ++n) {
    acl_op->RunAcl((void*)input_data, (void*)output_data);
    input_data += args.in_depth * args.in_cols * args.in_rows;
    output_data += args.in_depth * args.out_cols * args.out_rows;
  }
}

template class PoolKernel<GPU_MALI, float>;
}  // namespace operators
}  // namespace paddle_mobile

#endif
#endif