fc_compute_test.cc 7.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
19 20
#include "lite/tests/utils/fill_data.h"
#include "lite/tests/utils/naive_math_impl.h"
21 22 23
#ifdef LITE_WITH_X86
#include "lite/backends/x86/parallel.h"
#endif
Y
Yan Chunwei 已提交
24 25 26 27

namespace paddle {
namespace lite {

28
void AddBias(float* out, const float* bias, int num, int channel) {
Y
Yan Chunwei 已提交
29 30 31 32 33 34 35 36 37 38
  int remain = channel;
  for (int j = 0; j < num; ++j) {
    const float* ptr_bias = bias;
    float* ptr_out = out + j * channel;
    for (int i = 0; i < remain; ++i) {
      *(ptr_out++) += *(ptr_bias++);
    }
  }
}

39 40 41 42 43 44 45 46 47
void Relu(float* out, int num, int channel) {
  for (int i = 0; i < num * channel; ++i) {
    if (out[i] < 0) {
      out[i] = 0;
    }
  }
}

DDim ComputeOutDim(const DDim& dim_in, const DDim& wdim, int in_num_col_dim) {
Y
Yan Chunwei 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
  std::vector<int64_t> out_dim;
  out_dim.resize(in_num_col_dim + 1);
  auto in_mat_dims = dim_in.Flatten2D(in_num_col_dim);
  for (int i = 0; i < in_num_col_dim; ++i) {
    out_dim[i] = dim_in[i];
  }
  out_dim[in_num_col_dim] = wdim[1];
  return DDim(out_dim);
}

class FcOPTest : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string input_ = "x";
  std::string weight_ = "w";
63
  std::string weight_padding_ = "w_padding";
Y
Yan Chunwei 已提交
64 65 66 67
  std::string bias_ = "b";
  std::string out_ = "out";
  DDim dims_{{1, 128}};
  DDim wdims_{{128, 4}};
68
  DDim wdims_padding_;
Y
Yan Chunwei 已提交
69
  DDim bdims_{{4}};
70
  int in_num_col_dims_{1};
71 72
  bool with_relu_{false};
  bool padding_weights_{false};
Y
Yan Chunwei 已提交
73 74 75 76 77 78 79

 public:
  FcOPTest(const Place& place,
           const std::string& alias,
           DDim dim_in,
           DDim dim_w,
           DDim dim_b,
80 81 82
           int in_num_col_dims,
           bool with_relu,
           bool padding)
Y
Yan Chunwei 已提交
83 84 85 86
      : TestCase(place, alias),
        dims_(std::move(dim_in)),
        wdims_(std::move(dim_w)),
        bdims_(dim_b),
87 88 89 90 91 92 93 94 95
        in_num_col_dims_(in_num_col_dims),
        with_relu_(with_relu) {
#ifdef LITE_WITH_X86
    if (padding && wdims_[0] % 128 == 0 && wdims_[1] % 128 == 0) {
      padding_weights_ = true;
      wdims_padding_ = DDim({wdims_[0] + 4, wdims_[1] + 4});
    }
#endif
  }
Y
Yan Chunwei 已提交
96 97 98 99 100 101 102 103

  void RunBaseline(Scope* scope) override {
    auto x = scope->FindTensor(input_);
    auto w = scope->FindTensor(weight_);
    auto b = scope->FindTensor(bias_);
    bool flag_bias = b;
    auto out = scope->NewTensor(out_);
    CHECK(out);
104
    DDim out_dim = ComputeOutDim(x->dims(), w->dims(), in_num_col_dims_);
Y
Yan Chunwei 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    out->Resize(out_dim);

    auto x_data = x->data<float>();
    auto w_data = w->data<float>();
    const float* b_data = nullptr;
    if (flag_bias) {
      b_data = b->data<float>();
    }
    auto out_data = out->mutable_data<float>();

    int m = x->dims().count(0, in_num_col_dims_);
    CHECK_EQ(wdims_[0], x->dims().count(in_num_col_dims_, x->dims().size()));
    int k = wdims_[0];
    int n = wdims_[1];

120 121 122
    LOG(INFO) << "M=" << m << ", N=" << n << ", K=" << k
              << ", bias=" << flag_bias << ", with_relu=" << with_relu_
              << ", padding_weights=" << padding_weights_;
Y
Yan Chunwei 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

    if (m == 1) {
      basic_gemv(n,
                 k,
                 w_data,
                 x_data,
                 b_data,
                 out_data,
                 1.f,
                 0.f,
                 true,
                 flag_bias,
                 false);
    } else {
      basic_gemm(false,
                 false,
                 m,
                 n,
                 k,
                 1.f,
                 x_data,
                 k,
                 w_data,
                 n,
                 0.f,
                 out_data,
                 n,
                 b_data,
                 false,
                 false);
      if (flag_bias) {
154
        AddBias(out_data, b_data, m, n);
Y
Yan Chunwei 已提交
155 156
      }
    }
157 158 159 160 161
#ifdef LITE_WITH_X86
    if (flag_bias && with_relu_) {
      Relu(out_data, m, n);
    }
#endif
Y
Yan Chunwei 已提交
162 163 164 165 166
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType("fc");
    op_desc->SetInput("Input", {input_});
167 168 169 170 171
    if (padding_weights_) {
      op_desc->SetInput("W", {weight_padding_});
    } else {
      op_desc->SetInput("W", {weight_});
    }
Y
Yan Chunwei 已提交
172 173 174 175 176
    if (bdims_.production() > 0) {
      op_desc->SetInput("Bias", {bias_});
    }
    op_desc->SetOutput("Out", {out_});
    op_desc->SetAttr<int>("in_num_col_dims", in_num_col_dims_);
177 178 179 180 181
#ifdef LITE_WITH_X86
    std::string activation_type = with_relu_ ? "relu" : "";
    op_desc->SetAttr<std::string>("activation_type", activation_type);
    op_desc->SetAttr<bool>("padding_weights", padding_weights_);
#endif
Y
Yan Chunwei 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
  }

  void PrepareData() override {
    std::vector<float> din(dims_.production());
    fill_data_rand(din.data(), -1.f, 1.f, dims_.production());

    std::vector<float> win(wdims_.production());
    fill_data_rand(win.data(), -1.f, 1.f, wdims_.production());

    bool flag_bias = bdims_.production() > 0;
    std::vector<float> bin(bdims_.production());
    fill_data_rand(bin.data(), -1.f, 1.f, bdims_.production());

    SetCommonTensor(input_, dims_, din.data());
    SetCommonTensor(weight_, wdims_, win.data());
197 198 199 200 201 202 203 204 205
    if (padding_weights_) {
      std::vector<float> win_padding(wdims_padding_.production());
      for (int64_t i = 0; i < wdims_[0]; ++i) {
        memcpy(&(win_padding[i * wdims_padding_[1]]),
               &(win[i * wdims_[1]]),
               wdims_[1] * sizeof(float));
      }
      SetCommonTensor(weight_padding_, wdims_padding_, win_padding.data());
    }
Y
Yan Chunwei 已提交
206 207 208 209 210 211
    if (flag_bias) {
      SetCommonTensor(bias_, bdims_, bin.data());
    }
  }
};

212 213 214 215
void TestFCMain(Place place,
                float abs_error,
                bool with_relu = false,
                bool padding = false) {
Y
Yan Chunwei 已提交
216 217 218 219
  for (auto& m : {1, 3, 16}) {
    for (auto& n : {1, 4, 16, 128, 256, 1024}) {
      for (auto& k : {1, 16, 128, 1024}) {
        for (auto& bflag : {false, true}) {
220 221 222
          if (!bflag && with_relu) {
            continue;
          }
Y
Yan Chunwei 已提交
223 224 225
          DDim dim_in{{m, k}};
          DDim wdim{{k, n}};
          DDim bdim{{bflag ? n : 0}};
226 227
          std::unique_ptr<arena::TestCase> tester(new FcOPTest(
              place, "def", dim_in, wdim, bdim, 1, with_relu, padding));
228
#ifdef LITE_WITH_ARM
229 230 231 232
          if (place == TARGET(kARM)) {
            auto& ctx = tester->context()->As<ARMContext>();
            ctx.SetRunMode(lite_api::LITE_POWER_HIGH, 1);
          }
Y
Yan Chunwei 已提交
233
#endif
234
          arena::Arena arena(std::move(tester), place, abs_error);
Y
Yan Chunwei 已提交
235 236 237 238 239 240 241 242 243 244 245 246
          if (!arena.TestPrecision()) {
            LOG(ERROR) << "run m: " << m << ", n: " << n << ", k: " << k
                       << ", bias: " << (bflag ? "true" : "false") << " failed";
            return;
          }
        }
      }
    }
  }
}

TEST(FcOP, precision) {
247 248 249 250 251
  Place place;
  float abs_error = 6e-5;
#if defined(LITE_WITH_NPU)
  place = TARGET(kNPU);
  abs_error = 2e-1;  // Using fp16 in NPU
252 253 254
#elif defined(LITE_WITH_X86)
  place = TARGET(kX86);
  abs_error = 1e-4;
255 256 257 258
#elif defined(LITE_WITH_ARM)
  place = TARGET(kARM);
#else
  return;
Y
Yan Chunwei 已提交
259
#endif
260
  TestFCMain(place, abs_error);
Y
Yan Chunwei 已提交
261 262
}

263 264 265 266 267 268 269 270 271
#ifdef LITE_WITH_X86
TEST(FcOP, padding_and_parallel) {
  Place place(TARGET(kX86));
  float abs_error = 1e-4;
  x86::SetNumThreads(4);
  TestFCMain(place, abs_error, true, true);
}
#endif

Y
Yan Chunwei 已提交
272 273
}  // namespace lite
}  // namespace paddle