fc_compute_test.cc 5.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/tests/kernels/fill_data.h"
#include "lite/tests/kernels/test_funcs.h"

namespace paddle {
namespace lite {

void fill_bias_fc(float* out, const float* bias, int num, int channel) {
  int remain = channel;
  for (int j = 0; j < num; ++j) {
    const float* ptr_bias = bias;
    float* ptr_out = out + j * channel;
    for (int i = 0; i < remain; ++i) {
      *(ptr_out++) += *(ptr_bias++);
    }
  }
}

DDim compute_out_dim(const DDim& dim_in, const DDim& wdim, int in_num_col_dim) {
  std::vector<int64_t> out_dim;
  out_dim.resize(in_num_col_dim + 1);
  auto in_mat_dims = dim_in.Flatten2D(in_num_col_dim);
  for (int i = 0; i < in_num_col_dim; ++i) {
    out_dim[i] = dim_in[i];
  }
  out_dim[in_num_col_dim] = wdim[1];
  return DDim(out_dim);
}

class FcOPTest : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string input_ = "x";
  std::string weight_ = "w";
  std::string bias_ = "b";
  std::string out_ = "out";
  int in_num_col_dims_{1};
  DDim dims_{{1, 128}};
  DDim wdims_{{128, 4}};
  DDim bdims_{{4}};

 public:
  FcOPTest(const Place& place,
           const std::string& alias,
           DDim dim_in,
           DDim dim_w,
           DDim dim_b,
           int in_num_col_dims)
      : TestCase(place, alias),
        dims_(std::move(dim_in)),
        wdims_(std::move(dim_w)),
        bdims_(dim_b),
        in_num_col_dims_(in_num_col_dims) {}

  void RunBaseline(Scope* scope) override {
    auto x = scope->FindTensor(input_);
    auto w = scope->FindTensor(weight_);
    auto b = scope->FindTensor(bias_);
    bool flag_bias = b;
    auto out = scope->NewTensor(out_);
    CHECK(out);
    DDim out_dim = compute_out_dim(x->dims(), w->dims(), in_num_col_dims_);
    out->Resize(out_dim);

    LOG(INFO) << "out dims: " << out_dim;

    auto x_data = x->data<float>();
    auto w_data = w->data<float>();
    const float* b_data = nullptr;
    if (flag_bias) {
      b_data = b->data<float>();
    }
    auto out_data = out->mutable_data<float>();

    int m = x->dims().count(0, in_num_col_dims_);
    CHECK_EQ(wdims_[0], x->dims().count(in_num_col_dims_, x->dims().size()));
    int k = wdims_[0];
    int n = wdims_[1];

    LOG(INFO) << "m: " << m << ", n: " << n << ", k: " << k;

    if (m == 1) {
      basic_gemv(n,
                 k,
                 w_data,
                 x_data,
                 b_data,
                 out_data,
                 1.f,
                 0.f,
                 true,
                 flag_bias,
                 false);
    } else {
      basic_gemm(false,
                 false,
                 m,
                 n,
                 k,
                 1.f,
                 x_data,
                 k,
                 w_data,
                 n,
                 0.f,
                 out_data,
                 n,
                 b_data,
                 false,
                 false);
      if (flag_bias) {
        fill_bias_fc(out_data, b_data, m, n);
      }
    }
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType("fc");
    op_desc->SetInput("Input", {input_});
    op_desc->SetInput("W", {weight_});
    if (bdims_.production() > 0) {
      op_desc->SetInput("Bias", {bias_});
    }
    op_desc->SetOutput("Out", {out_});
    op_desc->SetAttr<int>("in_num_col_dims", in_num_col_dims_);
  }

  void PrepareData() override {
    std::vector<float> din(dims_.production());
    fill_data_rand(din.data(), -1.f, 1.f, dims_.production());

    std::vector<float> win(wdims_.production());
    fill_data_rand(win.data(), -1.f, 1.f, wdims_.production());

    bool flag_bias = bdims_.production() > 0;
    std::vector<float> bin(bdims_.production());
    fill_data_rand(bin.data(), -1.f, 1.f, bdims_.production());

    SetCommonTensor(input_, dims_, din.data());
    SetCommonTensor(weight_, wdims_, win.data());
    if (flag_bias) {
      SetCommonTensor(bias_, bdims_, bin.data());
    }
  }
};

void test_fc(Place place) {
  for (auto& m : {1, 3, 16}) {
    for (auto& n : {1, 4, 16, 128, 256, 1024}) {
      for (auto& k : {1, 16, 128, 1024}) {
        for (auto& bflag : {false, true}) {
          DDim dim_in{{m, k}};
          DDim wdim{{k, n}};
          DDim bdim{{bflag ? n : 0}};
          std::unique_ptr<arena::TestCase> tester(
              new FcOPTest(place, "def", dim_in, wdim, bdim, 1));
#ifdef WITH_ARM_LITE
          auto& ctx = tester->context()->As<ARMContext>();
          ctx.SetRunMode(LITE_POWER_HIGH, 1);
#endif
          arena::Arena arena(std::move(tester), place, 6e-5);
          if (!arena.TestPrecision()) {
            LOG(ERROR) << "run m: " << m << ", n: " << n << ", k: " << k
                       << ", bias: " << (bflag ? "true" : "false") << " failed";
            return;
          }
        }
      }
    }
  }
}

TEST(FcOP, precision) {
#ifdef LITE_WITH_X86
  Place place(TARGET(kX86));
#endif
#ifdef LITE_WITH_ARM
  Place place(TARGET(kARM));
  test_fc(place);
#endif
}

}  // namespace lite
}  // namespace paddle