conv_add_bn_kernel.cpp 3.8 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADDBN_OP

#include "operators/kernel/conv_add_bn_kernel.h"
H
hanbuhe 已提交
18
#include "fpga/api.h"
Z
zhangyang 已提交
19 20 21 22 23

namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
24
bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam<FPGA> *param) {
Z
zhangyang 已提交
25
  bool relu_enabled = false;
Z
zhangyang 已提交
26
  Tensor *input = const_cast<Tensor *>(param->Input());
27
  auto input_ptr = input->data<float>();
Z
zhangyang 已提交
28 29
  const Tensor *bias = param->Bias();
  auto bias_ptr = bias->data<float>();
30
  Tensor *filter = param->Filter();
H
hanbuhe 已提交
31

Z
zhangyang 已提交
32
  Tensor *out = param->Output();
Z
zhangyang 已提交
33

Z
zhangyang 已提交
34 35 36 37 38
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
Z
zhangyang 已提交
39
  PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0] &&
Z
zhangyang 已提交
40
                            bias->dims()[0] == param->InputBias()->dims()[0],
Z
zhangyang 已提交
41
                        "Output channel should be equal to bias number");
Z
zhangyang 已提交
42

Z
zhangyang 已提交
43
  const int channel = out->dims()[1];
H
hanbuhe 已提交
44 45
  float *bs_ptr =
      reinterpret_cast<float *>(fpga::fpga_malloc(2 * channel * sizeof(float)));
Z
zhangyang 已提交
46 47 48 49 50 51
  Tensor *new_scale = new Tensor();
  Tensor *new_bias = new Tensor();
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
Z
zhangyang 已提交
52 53 54 55
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
    new_bias_ptr[i] =
        bn_bias_ptr[i] + (bias_ptr[i] - bn_mean_ptr[i]) * new_scale_ptr[i];
Z
zhangyang 已提交
56 57
    bs_ptr[i + channel] = new_scale_ptr[i];
    bs_ptr[i] = new_bias_ptr[i];
Z
zhangyang 已提交
58 59 60 61
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);

Z
zhangyang 已提交
62 63
  float max_value = fpga::filter_find_max(filter);
  fpga::format_filter(filter, max_value, param->Groups());
64
  auto filter_ptr = filter->data<float>();
H
hanbuhe 已提交
65

Z
zhangyang 已提交
66 67 68 69 70
  int element_num_per_div =
      fpga::get_element_num_per_div(filter, param->Groups());
  fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);

  fpga::format_ofm(out);
71
  auto out_ptr = out->mutable_data<float>();
Z
zhangyang 已提交
72

Z
zhangyang 已提交
73 74
  fpga::ConvArgs convArgs;
  convArgs.relu_enabled = relu_enabled;
75
  convArgs.filter_address = (void *)filter_ptr;
Z
zhangyang 已提交
76 77
  convArgs.filter_num = filter->dims()[0];
  convArgs.group_num = param->Groups();
78
  convArgs.sb_address = (void *)bs_ptr;
Z
zhangyang 已提交
79 80 81 82
  convArgs.kernel.stride_h = param->Strides()[0];
  convArgs.kernel.stride_w = param->Strides()[1];
  convArgs.kernel.height = filter->dims()[2];
  convArgs.kernel.width = filter->dims()[3];
83
  convArgs.image.address = (void *)input_ptr;
Z
zhangyang 已提交
84 85 86 87 88
  convArgs.image.channels = input->dims()[1];
  convArgs.image.height = input->dims()[2];
  convArgs.image.width = input->dims()[3];
  convArgs.image.pad_height = param->Paddings()[0];
  convArgs.image.pad_width = param->Paddings()[1];
Z
zhangyang 已提交
89
  convArgs.image.scale_address = input->scale;
90
  convArgs.output.address = (void *)out_ptr;
Z
zhangyang 已提交
91
  convArgs.output.scale_address = out->scale;
Z
zhangyang 已提交
92
  param->SetFpgaArgs(convArgs);
H
hanbuhe 已提交
93

Z
zhangyang 已提交
94 95 96 97
  return true;
}

template <>
Z
zhangyang 已提交
98
void ConvAddBNKernel<FPGA, float>::Compute(
N
nhzlx 已提交
99
    const FusionConvAddBNParam<FPGA> &param) const {
Z
zhangyang 已提交
100 101 102 103 104 105 106 107
  fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvAddBNKernel<FPGA, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif