elementwise_ops.cc 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_defs.h>
#include <bmcompiler_if.h>
#include <bmcompiler_if_lite.h>
17
#include <bmcompiler_op_code.h>
18 19 20 21 22 23 24 25 26
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace bm {

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
float* compute_elementwise_both_const(OpLite* op) {
  auto op_info = op->op_info();
  auto scope = op->scope();
  auto op_type = op_info->Type();

  // input
  auto x_var_name = op_info->Input("X").front();
  auto x = scope->FindVar(x_var_name)->GetMutable<lite::Tensor>();
  auto x_dims = x->dims();
  auto y_var_name = op_info->Input("Y").front();
  auto y = scope->FindVar(y_var_name)->GetMutable<lite::Tensor>();
  auto y_dims = y->dims();
  // output
  auto output_var_name = op_info->Output("Out").front();
  auto output = scope->FindVar(output_var_name)->GetMutable<lite::Tensor>();
  auto output_dims = output->dims();
  float* cpu_data =
      static_cast<float*>(malloc(sizeof(float) * output->data_size()));
  CHECK(cpu_data != nullptr);
  CHECK_EQ(x_dims.size(), y_dims.size());
  const float* y_data = const_cast<const float*>(y->mutable_data<float>());
  const float* x_data = const_cast<const float*>(x->mutable_data<float>());
  if (op_type == "elementwise_mul") {
    for (size_t i = 0; i < output->data_size(); i++) {
      cpu_data[i] = x_data[i] * y_data[i];
    }
  } else if (op_type == "elementwise_add") {
    for (size_t i = 0; i < output->data_size(); i++) {
      cpu_data[i] = x_data[i] + y_data[i];
    }
  } else if (op_type == "elementwise_sub") {
    for (size_t i = 0; i < output->data_size(); i++) {
      cpu_data[i] = x_data[i] - y_data[i];
    }
  } else if (op_type == "elementwise_div") {
    for (size_t i = 0; i < output->data_size(); i++) {
      cpu_data[i] = x_data[i] / y_data[i];
    }
  }
  return cpu_data;
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto scope = op->scope();
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  // input
  const int input_num = 2;
  int** shape = new int*[input_num];
  int* dim = new int[input_num];
  const char** name = new const char*[input_num];
  auto x_var_name = op_info->Input("X").front();
  auto x = scope->FindVar(x_var_name)->GetMutable<lite::Tensor>();
  auto x_dims = x->dims();
  name[0] = static_cast<const char*>(x_var_name.c_str());
  dim[0] = x_dims.size();
  std::vector<int32_t> i_x_shape_data(x_dims.size());
  for (size_t i = 0; i < x_dims.size(); i++) {
88
    i_x_shape_data[i] = static_cast<int>(x_dims[i]);
89 90
  }
  shape[0] = &i_x_shape_data[0];
91
  bool x_is_const = !graph->HasNode(x_var_name);
92 93 94 95 96 97 98
  auto y_var_name = op_info->Input("Y").front();
  auto y = scope->FindVar(y_var_name)->GetMutable<lite::Tensor>();
  auto y_dims = y->dims();
  name[1] = static_cast<const char*>(y_var_name.c_str());
  dim[1] = y_dims.size();
  std::vector<int32_t> i_y_shape_data(y_dims.size());
  for (size_t i = 0; i < y_dims.size(); i++) {
99
    i_y_shape_data[i] = static_cast<int>(y_dims[i]);
100 101 102 103 104 105 106 107 108 109 110 111 112
  }
  shape[1] = &i_y_shape_data[0];
  bool y_is_const = !graph->HasNode(y_var_name);
  // output
  auto output_var_name = op_info->Output("Out").front();
  auto output = scope->FindVar(output_var_name)->GetMutable<lite::Tensor>();
  auto output_dims = output->dims();
  const int64_t* output_shape_data =
      const_cast<const int64_t*>(&output_dims.data()[0]);
  std::vector<int32_t> i_output_shape_data(output_dims.size());
  for (size_t i = 0; i < output_dims.size(); i++) {
    i_output_shape_data[i] = static_cast<int>(output_shape_data[i]);
  }
113
  auto axis = op_info->GetAttr<int>("axis");
114 115
  int op_code{-1};
  if (op_type == "elementwise_mul") {
116
    op_code = BINARY_MUL;
117
  } else if (op_type == "elementwise_add") {
118
    op_code = BINARY_ADD;
119
  } else if (op_type == "elementwise_sub") {
120
    op_code = BINARY_SUB;
121 122
  } else if (op_type == "elementwise_div") {
    op_code = BINARY_DIV;
123 124 125
  } else {
    LOG(FATAL) << "UNSUPPORTED ELTWISE OPERATION: " << op_type;
  }
126 127 128 129
  const float* y_data = const_cast<const float*>(y->mutable_data<float>());
  const float* x_data = const_cast<const float*>(x->mutable_data<float>());
  auto unique_op_name = lite::subgraph::bm::UniqueName("expand_ndims");
  std::vector<int32_t> i_expand_shape_data(3);
130
  LOG(INFO) << x_dims << " " << y_dims << " " << output_dims;
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  if (x_is_const && y_is_const) {
    float* cpu_data = compute_elementwise_both_const(op);
    bm_add_const_tensor(graph->GetCompilerHandle(),
                        static_cast<const char*>(output_var_name.c_str()),
                        const_cast<const int*>(&i_output_shape_data[0]),
                        output_dims.size(),
                        static_cast<bm_data_type_t>(DTYPE_FP32),
                        static_cast<const void*>(cpu_data));
  } else {
    if (y_is_const) {
      if (dim[0] == dim[1] || 2 == dim[0]) {
        bm_add_const_tensor(graph->GetCompilerHandle(),
                            name[1],
                            shape[1],
                            dim[1],
                            static_cast<bm_data_type_t>(DTYPE_FP32),
                            static_cast<const void*>(y_data));
      } else if (1 == dim[1] && 1 == axis) {
        add_expand_ndims_layer(
            graph->GetCompilerHandle(),
            name[1],
            shape[1],
            dim[1],
            static_cast<const float*>(y_data),
            -1,
            2,
            static_cast<const char*>(unique_op_name.c_str()));
        name[1] = static_cast<const char*>(unique_op_name.c_str());
        dim[1] = 3;
        i_expand_shape_data[0] = i_y_shape_data[0];
        i_expand_shape_data[1] = 1;
        i_expand_shape_data[2] = 1;
        shape[1] = &i_expand_shape_data[0];
        y_data = nullptr;
      }
166 167 168
    } else if (4 == dim[1] && 1 == shape[1][2] && 1 == shape[1][3]) {
      LOG(INFO) << "aaaaaaa";
      y_data = nullptr;
169
    }
170 171 172 173 174 175 176 177 178 179 180 181 182
    add_binary_layer_v2(graph->GetCompilerHandle(),
                        name[0],
                        shape[0],
                        dim[0],
                        0,
                        static_cast<const float*>(x_data),
                        name[1],
                        shape[1],
                        dim[1],
                        0,
                        static_cast<const float*>(y_data),
                        static_cast<const char*>(output_var_name.c_str()),
                        op_code);
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  }
  delete[] shape;
  delete[] name;
  delete[] dim;
  graph->AddNode(output_var_name);
  return SUCCESS;
}

}  // namespace bm
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(elementwise_add,
                         kBM,
                         paddle::lite::subgraph::bm::ElementwiseConverter);
199 200 201 202 203 204
REGISTER_SUBGRAPH_BRIDGE(elementwise_mul,
                         kBM,
                         paddle::lite::subgraph::bm::ElementwiseConverter);
REGISTER_SUBGRAPH_BRIDGE(elementwise_sub,
                         kBM,
                         paddle::lite::subgraph::bm::ElementwiseConverter);
205 206 207
REGISTER_SUBGRAPH_BRIDGE(elementwise_div,
                         kBM,
                         paddle::lite::subgraph::bm::ElementwiseConverter);