elementwise_mul_compute.cc 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/opencl/elementwise_mul_compute.h"
#include <memory>
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/op_registry.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

void ElementwiseMulFloatImageCompute::PrepareForRun() {
  ele_param_ = param_.get_mutable<param_t>();
  auto* y = ele_param_->Y;
29
  auto* x = ele_param_->X;
30
  auto y_dims = y->dims();
31 32
  auto x_dims = x->dims();
  if (y_dims == x_dims) {
33 34 35 36
    kernel_func_name_ = "elementwise_mul";
  } else if (y_dims.size() == 1) {
    kernel_func_name_ = "channel_mul_d1";
  } else if (y_dims.size() == 2) {
37 38 39 40 41
    if (x_dims[0] == y_dims[0] && x_dims[1] == y_dims[1]) {
      kernel_func_name_ = "channel_mul_d2_nc";
    } else {
      kernel_func_name_ = "channel_mul_d2_hw";
    }
42 43 44 45 46 47 48 49 50 51 52
  } else if (y_dims.size() == 4) {
    kernel_func_name_ = "channel_mul_d4";
  } else {
    LOG(FATAL) << "ElementwiseMul not supported y_dims.size():" << y_dims.size()
               << ", x_dims.size():" << ele_param_->X->dims().size();
  }
  VLOG(4) << "kernel_func_name_:" << kernel_func_name_;
  VLOG(4) << "y_dims:" << y_dims;
  VLOG(4) << "y_dims.size():" << y_dims.size();

  auto& context = ctx_->As<OpenCLContext>();
X
xiebaiyuan 已提交
53 54 55 56
  context.cl_context()->AddKernel(kernel_func_name_,
                                  "image/elementwise_mul_kernel.cl",
                                  build_options_,
                                  time_stamp_);
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
}

void ElementwiseMulFloatImageCompute::Run() {
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);

  auto* x = ele_param_->X;
  auto* y = ele_param_->Y;
  auto* out = ele_param_->Out;

  VLOG(4) << "x->target():" << TargetToStr(x->target());
  VLOG(4) << "y->target():" << TargetToStr(y->target());
  VLOG(4) << "out->target():" << TargetToStr(out->target());
  VLOG(4) << "x->dims():" << x->dims();
  VLOG(4) << "y->dims():" << y->dims();
  VLOG(4) << "out->dims():" << out->dims();

  paddle::lite::CLImageConverterDefault default_convertor;
  auto x_img_shape = default_convertor.InitImageDimInfoWith(x->dims());  // w, h
  auto x_img_width = x_img_shape[0];
  auto x_img_height = x_img_shape[1];
  auto out_img_shape =
      default_convertor.InitImageDimInfoWith(out->dims());  // w, h
  auto y_img_shape = default_convertor.InitImageDimInfoWith(y->dims());

  auto* x_img = x->data<float, cl::Image2D>();
  auto* y_img = y->data<float, cl::Image2D>();
  auto* out_img =
      out->mutable_data<float, cl::Image2D>(out_img_shape[0], out_img_shape[1]);

  VLOG(4) << "x_img_shape[w,h]:" << x_img_width << " " << x_img_height;
  VLOG(4) << "y_img_shape[w,h]:" << y_img_shape[0] << " " << y_img_shape[1];
  VLOG(4) << "out_img_shape[w,h]:" << out_img_shape[0] << " "
          << out_img_shape[1];

  STL::stringstream kernel_key;
X
xiebaiyuan 已提交
93
  kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
94 95 96 97
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());

  int arg_idx = 0;
  auto y_dims = y->dims();
98 99
  auto x_dims = x->dims();
  if (y_dims == x_dims) {
100 101 102 103 104 105 106 107
    // kernel: elementwise_mul(channel_mul_d4)
    cl_int status = kernel.setArg(arg_idx, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *y_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_img);
    CL_CHECK_FATAL(status);
  } else if (y_dims.size() == 1 || y_dims.size() == 4) {
108
    auto tensor_w = x_dims[x_dims.size() - 1];
109 110 111 112 113 114 115 116 117 118 119
    VLOG(4) << "tensor_w:" << tensor_w;
    // kernel: channel_mul_d1 / channel_mul_d4
    cl_int status = kernel.setArg(arg_idx, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *y_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(tensor_w));
    CL_CHECK_FATAL(status);
  } else if (y_dims.size() == 2) {
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    if (x_dims[0] == y_dims[0] && x_dims[1] == y_dims[1]) {
      auto tensor_w = x_dims[x_dims.size() - 1];
      VLOG(4) << "tensor_w:" << tensor_w;
      // kernel: channel_mul_d2_nc
      cl_int status = kernel.setArg(arg_idx, *x_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *y_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *out_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, static_cast<const int>(tensor_w));
      CL_CHECK_FATAL(status);
    } else {
      auto y_tensor_h = y->dims()[0];
      auto y_tensor_w = y->dims()[1];
      VLOG(4) << "y_tensor_w:" << y_tensor_w << " y_tensor_h:" << y_tensor_h;
      // kernel: channel_mul_d2_hw
      cl_int status = kernel.setArg(arg_idx, *x_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *y_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *out_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, static_cast<const int>(y_tensor_w));
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, static_cast<const int>(y_tensor_h));
      CL_CHECK_FATAL(status);
    }
148 149 150 151 152 153 154
  } else {
    LOG(FATAL) << "ElementwiseMul not supported y_dims.size():"
               << y_dims.size();
  }

  auto global_work_size = cl::NDRange{static_cast<cl::size_type>(x_img_width),
                                      static_cast<cl::size_type>(x_img_height)};
X
xiebaiyuan 已提交
155

156 157 158 159 160 161 162
  auto status = EnqueueNDRangeKernel(context,
                                     kernel,
                                     cl::NullRange,
                                     global_work_size,
                                     cl::NullRange,
                                     nullptr,
                                     event_);
163
  CL_CHECK_FATAL(status);
X
xiebaiyuan 已提交
164
  std::string time_stamp_{GetTimeStamp()};
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

  VLOG(4) << "global_work_size:[2D]:" << x_img_width << " " << x_img_height;
}

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(elementwise_mul,
                     kOpenCL,
                     kFloat,
                     kImageDefault,
                     ocl::ElementwiseMulFloatImageCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Y",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();