elementwise_mul_compute.cc 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/opencl/elementwise_mul_compute.h"
#include <memory>
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/op_registry.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

void ElementwiseMulFloatImageCompute::PrepareForRun() {
  ele_param_ = param_.get_mutable<param_t>();
  auto* y = ele_param_->Y;
29
  auto* x = ele_param_->X;
30
  auto y_dims = y->dims();
31 32
  auto x_dims = x->dims();
  if (y_dims == x_dims) {
33 34 35 36
    kernel_func_name_ = "elementwise_mul";
  } else if (y_dims.size() == 1) {
    kernel_func_name_ = "channel_mul_d1";
  } else if (y_dims.size() == 2) {
37 38 39 40 41
    if (x_dims[0] == y_dims[0] && x_dims[1] == y_dims[1]) {
      kernel_func_name_ = "channel_mul_d2_nc";
    } else {
      kernel_func_name_ = "channel_mul_d2_hw";
    }
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
  } else if (y_dims.size() == 4) {
    kernel_func_name_ = "channel_mul_d4";
  } else {
    LOG(FATAL) << "ElementwiseMul not supported y_dims.size():" << y_dims.size()
               << ", x_dims.size():" << ele_param_->X->dims().size();
  }
  VLOG(4) << "kernel_func_name_:" << kernel_func_name_;
  VLOG(4) << "y_dims:" << y_dims;
  VLOG(4) << "y_dims.size():" << y_dims.size();

  auto& context = ctx_->As<OpenCLContext>();
  context.cl_context()->AddKernel(
      kernel_func_name_, "image/elementwise_mul_kernel.cl", build_options_);
}

void ElementwiseMulFloatImageCompute::Run() {
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);

  auto* x = ele_param_->X;
  auto* y = ele_param_->Y;
  auto* out = ele_param_->Out;

  VLOG(4) << "x->target():" << TargetToStr(x->target());
  VLOG(4) << "y->target():" << TargetToStr(y->target());
  VLOG(4) << "out->target():" << TargetToStr(out->target());
  VLOG(4) << "x->dims():" << x->dims();
  VLOG(4) << "y->dims():" << y->dims();
  VLOG(4) << "out->dims():" << out->dims();

  paddle::lite::CLImageConverterDefault default_convertor;
  auto x_img_shape = default_convertor.InitImageDimInfoWith(x->dims());  // w, h
  auto x_img_width = x_img_shape[0];
  auto x_img_height = x_img_shape[1];
  auto out_img_shape =
      default_convertor.InitImageDimInfoWith(out->dims());  // w, h
  auto y_img_shape = default_convertor.InitImageDimInfoWith(y->dims());

  auto* x_img = x->data<float, cl::Image2D>();
  auto* y_img = y->data<float, cl::Image2D>();
  auto* out_img =
      out->mutable_data<float, cl::Image2D>(out_img_shape[0], out_img_shape[1]);

  VLOG(4) << "x_img_shape[w,h]:" << x_img_width << " " << x_img_height;
  VLOG(4) << "y_img_shape[w,h]:" << y_img_shape[0] << " " << y_img_shape[1];
  VLOG(4) << "out_img_shape[w,h]:" << out_img_shape[0] << " "
          << out_img_shape[1];

  STL::stringstream kernel_key;
  kernel_key << kernel_func_name_ << build_options_;
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());

  int arg_idx = 0;
  auto y_dims = y->dims();
96 97
  auto x_dims = x->dims();
  if (y_dims == x_dims) {
98 99 100 101 102 103 104 105
    // kernel: elementwise_mul(channel_mul_d4)
    cl_int status = kernel.setArg(arg_idx, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *y_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_img);
    CL_CHECK_FATAL(status);
  } else if (y_dims.size() == 1 || y_dims.size() == 4) {
106
    auto tensor_w = x_dims[x_dims.size() - 1];
107 108 109 110 111 112 113 114 115 116 117
    VLOG(4) << "tensor_w:" << tensor_w;
    // kernel: channel_mul_d1 / channel_mul_d4
    cl_int status = kernel.setArg(arg_idx, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *y_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(tensor_w));
    CL_CHECK_FATAL(status);
  } else if (y_dims.size() == 2) {
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    if (x_dims[0] == y_dims[0] && x_dims[1] == y_dims[1]) {
      auto tensor_w = x_dims[x_dims.size() - 1];
      VLOG(4) << "tensor_w:" << tensor_w;
      // kernel: channel_mul_d2_nc
      cl_int status = kernel.setArg(arg_idx, *x_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *y_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *out_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, static_cast<const int>(tensor_w));
      CL_CHECK_FATAL(status);
    } else {
      auto y_tensor_h = y->dims()[0];
      auto y_tensor_w = y->dims()[1];
      VLOG(4) << "y_tensor_w:" << y_tensor_w << " y_tensor_h:" << y_tensor_h;
      // kernel: channel_mul_d2_hw
      cl_int status = kernel.setArg(arg_idx, *x_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *y_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *out_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, static_cast<const int>(y_tensor_w));
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, static_cast<const int>(y_tensor_h));
      CL_CHECK_FATAL(status);
    }
146 147 148 149 150 151 152
  } else {
    LOG(FATAL) << "ElementwiseMul not supported y_dims.size():"
               << y_dims.size();
  }

  auto global_work_size = cl::NDRange{static_cast<cl::size_type>(x_img_width),
                                      static_cast<cl::size_type>(x_img_height)};
153 154
  event_ = std::shared_ptr<cl::Event>(new cl::Event);
  auto  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_img, event_);

  VLOG(4) << "global_work_size:[2D]:" << x_img_width << " " << x_img_height;
}

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(elementwise_mul,
                     kOpenCL,
                     kFloat,
                     kImageDefault,
                     ocl::ElementwiseMulFloatImageCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Y",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();