executor.cpp 30.8 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

D
dolphin8 已提交
15
#include <algorithm>
16
#include <utility>
W
wangliu 已提交
17
#include <vector>
L
liuruilong 已提交
18
#include "common/enforce.h"
L
liuruilong 已提交
19
#include "common/log.h"
H
hjchen2 已提交
20
#include "memory/t_malloc.h"
21
#include "framework/context.h"
L
liuruilong 已提交
22
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
23 24
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
25
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
26 27 28 29
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
30
#include "framework/executor.h"
H
hjchen2 已提交
31
#include "pass/memory_optimize.h"
L
update  
liuruilong 已提交
32 33 34
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
35 36

namespace paddle_mobile {
37
namespace framework {
38

W
wangliu 已提交
39 40
#pragma mark - executor

41 42 43 44 45
template <typename Device, typename T>
void Executor<Device, T>::SetThreadNum(int threads) {
  set_global_num_threads(threads);
}

46
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
47 48 49 50
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
51
    : program_(program),
H
hjchen2 已提交
52 53
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
54 55
      lod_mode_(lod_mode),
      config_(config) {
56 57
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
58
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
59
  variable_ptr->SetValue<int>(batch_size);
60 61

  program_desc_ =
Refine  
陈后江 已提交
62
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
63 64
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
H
hjchen2 已提交
65
  pass::MemoryOptPass()(program_desc_.get(), program_.scope.get());
66 67 68
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
69

70
  const auto &blocks = program_desc_->Blocks();
71 72 73 74 75 76 77 78
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
79
        op_desc->GetAttrMap(), program_.scope.get());
80 81 82 83
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
84
    }
85
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
86
  }
W
wangliu 已提交
87
  if (program_.combined) {
L
liuruilong 已提交
88 89 90 91
    InitCombineMemory();
  } else {
    InitMemory();
  }
92

93 94 95 96 97
#ifdef PADDLE_MOBILE_FPGA
  program_.scope->EraseVars({"feed", "fetch"});
  program_.scope->print_vars();
#endif

98
  int count = 0;
99 100 101
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
102
  }
W
wangliu 已提交
103 104
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

132
template <typename T>
133
static void LoadMemInternal(void **data, LoDTensor *tensor,
134
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
135
  char **data_buf = reinterpret_cast<char **>(data);
136
  int64_t size = tensor->numel();
137
  T *tensor_data = tensor->mutable_data<T>();
138 139
  if (quant_uint8) {
    // should be moved into operator init function
140 141
    float min_value;
    float max_value;
142 143 144
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
145
    const float factor = (max_value - min_value) / 255.0;
146
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
147 148
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
149
    }
150
    *data_buf += size * sizeof(uint8_t);
151
  } else {
152 153
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
154
  }
155
}
W
wangliu 已提交
156

157 158 159 160
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
161
  char **data_buf = reinterpret_cast<char **>(data);
162
  // version
163
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
164
  *data_buf += sizeof(uint32_t);
165
  // lod information
H
hjchen2 已提交
166 167
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
168
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
169
  *data_buf += sizeof(uint64_t);
170 171 172 173

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
174
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
175
    *data_buf += sizeof(uint64_t);
176
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
177
    memory::Copy(tmp_dim.data(), *data_buf, size);
178
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
179
    *data_buf += size;
W
wangliu 已提交
180
  }
181
  // tensor version
182
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
183
  *data_buf += sizeof(uint32_t);
184
  // tensor desc size
185
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
186
  *data_buf += sizeof(int32_t);
187
  // skip tensor desc
Refine  
陈后江 已提交
188
  *data_buf += tensor_desc_size;
189

190 191
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
192 193
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
194
    case VARTYPE_TYPE_FP32:
195 196
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
197
      break;
198
    case VARTYPE_TYPE_INT8:
199
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
200
      break;
201
    case VARTYPE_TYPE_INT32:
202
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
203 204
      break;
    default:
205
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
206
  }
W
wangliu 已提交
207 208
}

209 210 211
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
212 213 214 215
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
216
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
217 218
          continue;
        }
H
hjchen2 已提交
219
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
220
        char *origin_data =
Refine  
陈后江 已提交
221
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
222
        char *data = origin_data;
H
update  
hjchen2 已提交
223
        auto tensor = var->template GetMutable<LoDTensor>();
224 225
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
226
      } else {
227
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
228
        varInputMemory(var_desc, var);
W
wangliu 已提交
229 230 231 232 233
      }
    }
  }
}

234 235
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
236
  char *origin_data = nullptr;
Refine  
陈后江 已提交
237
  bool self_alloc = false;
238
  if (program_.combined_params_buf && program_.combined_params_len) {
239 240
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
241
  } else {
Refine  
陈后江 已提交
242
    self_alloc = true;
Refine  
陈后江 已提交
243
    origin_data = ReadFileToBuff(program_.para_path);
244
  }
Refine  
陈后江 已提交
245 246
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
247
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
248 249 250 251
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
252
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
253 254
          continue;
        }
L
liuruilong 已提交
255 256

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
257
        auto tensor = var->template GetMutable<LoDTensor>();
258
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
259
      } else {
H
update  
hjchen2 已提交
260 261
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
262 263 264
      }
    }
  }
Refine  
陈后江 已提交
265
  if (self_alloc) {
266
    delete[] origin_data;
Refine  
陈后江 已提交
267 268
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
269
}
270

L
liuruilong 已提交
271
template <typename Device, typename T>
L
liuruilong 已提交
272
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
L
liuruilong 已提交
273 274 275 276 277 278
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      auto tensor = var->template GetMutable<LoDTensor>();
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
279
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
280 281 282 283 284
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
285 286 287 288
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
L
liuruilong 已提交
289
          tensor->template mutable_data<T>();
H
update  
hjchen2 已提交
290 291 292
        } else {
          PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`",
                                        var_desc->Type());
L
liuruilong 已提交
293 294 295 296 297 298 299 300 301 302
        }
      }
    }
  }

  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<T>();
}

303 304
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
305
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
306
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
307
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
308 309 310
  tensor->init(typeid(float));
  return true;
#endif
H
update  
hjchen2 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
  auto TypeId = [](const VarType_Type &type) -> std::type_index {
    switch (type) {
      case VARTYPE_TYPE_BOOL:
        return typeid(bool);
      case VARTYPE_TYPE_FP32:
        return typeid(float);
      case VARTYPE_TYPE_INT8:
        return typeid(int8_t);
      case VARTYPE_TYPE_INT32:
        return typeid(int);
      case VARTYPE_TYPE_INT64:
        return typeid(int64_t);
      default:
        PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
    }
  };

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
340
  }
H
update  
hjchen2 已提交
341
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
342
}
L
liuruilong 已提交
343

344 345 346 347 348
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
349
  }
350 351 352 353 354 355 356 357
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
358
  }
359
  return this->Predict();
W
wangliu 已提交
360
}
xiebaiyuan's avatar
xiebaiyuan 已提交
361

362 363 364
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
365 366 367 368 369 370 371
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
372
  Tensor feed_tensor(input, make_ddim(dims));
373
  SetInput(feed_tensor, input_name);
374 375
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
376 377
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
378 379 380 381 382 383
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
384

385 386 387
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
388
  int index = 0;
389
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
390
    index = feed_indices_.find(var_name)->second;
391
  }
H
hjchen2 已提交
392 393 394 395
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

L
liuruilong 已提交
396
  if (config_.load_when_predict) {
Z
zhaojiaying01 已提交
397 398 399
    if (input_dim_last_ != input.dims()) {
      InitNoPersistableMemory(input);
      input_dim_last_ = input.dims();
L
liuruilong 已提交
400 401 402
    }
  }

H
hjchen2 已提交
403 404
  target.Resize(input.dims());
  target.ShareDataWith(input);
405
}
xiebaiyuan's avatar
xiebaiyuan 已提交
406

407 408 409
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
410
  int index = 0;
411
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
412
    index = feed_indices_.find(var_name)->second;
413
  }
H
hjchen2 已提交
414 415 416 417
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

L
liuruilong 已提交
418
  if (config_.load_when_predict) {
Z
zhaojiaying01 已提交
419
    if (input_dim_last_ != input.dims()) {
420
      InitNoPersistableMemory(input);
Z
zhaojiaying01 已提交
421
      input_dim_last_ = input.dims();
L
liuruilong 已提交
422 423 424
    }
  }

H
hjchen2 已提交
425 426 427
  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
428 429 430 431 432
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
433 434 435 436 437 438 439 440 441
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
442

443 444 445 446 447 448 449
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
450
}
xiebaiyuan's avatar
xiebaiyuan 已提交
451

452 453
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
454 455 456
#if _OPENMP
  omp_set_num_threads(get_global_num_threads());
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
457
#ifdef PADDLE_MOBILE_PROFILE
458
  std::vector<ProfInfo> profile(ops_of_block0_.size());
459 460
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
461
#endif
462
  for (auto &op_handler : ops_of_block0_) {
xiebaiyuan's avatar
xiebaiyuan 已提交
463
#ifdef PADDLE_MOBILE_PROFILE
464 465
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
466
#endif
H
hjchen2 已提交
467
    DLOG << "run op: " << op_handler->Type();
468 469 470 471
    if (lod_mode_) {
      op_handler->InferShape();
    }
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
472
#ifdef PADDLE_MOBILE_PROFILE
473 474 475
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
476 477 478 479 480 481 482
#endif
  }
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
483 484 485
    if (ops_of_block0_[i]->Type() == "conv2d" ||
        ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = ops_of_block0_[i]->Inputs();
486 487
      auto *filter =
          GetVarValue<LoDTensor>("Filter", inputs, *(program_.scope));
488
      int kernel_size = filter->dims()[2];
489 490
      _tp[ops_of_block0_[i]->Type() + "_" + std::to_string(kernel_size)] +=
          timeCost;
491
    } else {
492
      _tp[ops_of_block0_[i]->Type()] += timeCost;
493
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
494
  }
H
hjchen2 已提交
495
  printf("====================[ profile ]======================\n");
496
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
512
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
513
#endif
514
  return PMSuccess;
xiebaiyuan's avatar
xiebaiyuan 已提交
515 516
}

517
#ifdef PADDLE_MOBILE_FPGA
518 519 520 521
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
522
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
523 524
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
525
}
526

527 528
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
529
  InjectVariable(t, "feed0");
530
}
531

532
template <typename Device, typename T>
533
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
534
  auto input_size = v.size();
Z
zhangyang0701 已提交
535 536
  int index = 0;
  auto vars = program_.scope->VarContain("feed", &index);
537 538 539
  PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
540
    auto var = program_.scope->Var("feed", i + index);
541 542 543 544 545 546 547 548 549
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
550 551
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
552 553
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
554

555
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
556
    auto var = program_.scope->Var("fetch", i + index);
557 558
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
559
  }
560
}
561

562
template <typename Device, typename T>
563 564
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
Z
zhangyang0701 已提交
565 566
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
567
  auto output_size = vars.size();
568
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
569
    auto var = program_.scope->Var("fetch", i + index);
570
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
571
    v->push_back(fetch_tensor);
572 573 574
  }
}

575 576 577 578 579
template <typename Device, typename T>
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
580
}
581

582 583
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
584
  auto &ops = ops_of_block0_;
585

Z
zhangyang 已提交
586 587 588 589 590
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
591 592 593
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
594
}
595

596 597
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
598
  auto &ops = ops_of_block0_;
599
  end = end < 0 ? static_cast<int>(ops.size()) : end;
600 601 602 603 604 605 606 607 608 609 610 611
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
612
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
613 614 615 616 617 618 619
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
620
}
621

622 623
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
624
  Predict_From_To(start);
625
}
626

627 628
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
629
  Predict_From_To(0, end);
630
}
631 632
#endif

Y
yangfei 已提交
633
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
634 635
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
636
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      auto cl_image = var->template GetMutable<CLImage>();

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
668

xiebaiyuan's avatar
xiebaiyuan 已提交
669 670 671
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
672 673 674 675 676 677 678
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor *target_tensor =
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
679 680 681 682 683

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
  DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << target_tensor->dims();
  DLOG << "input.dims()   " << input.dims();
684
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
685
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
686
    if (input_dim_last_ != input.dims()) {
687 688 689
      DLOG << "SetInput ---- > resize1";
      target_tensor->Resize(input.dims());
      target_tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
690 691 692 693 694 695 696 697
      InitNoPersistableMemory(*target_tensor);
    }
  } else {
    DLOG << "SetInput ---- > resize2";
    target_tensor->Resize(input.dims());
    DLOG << "SetInput ---- > ShareDataWith";
  }
  target_tensor->ShareDataWith(input);
698 699
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
700 701
}

702 703 704
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
705

Y
yangfei 已提交
706
template <>
H
hjchen2 已提交
707 708
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

746
  const TensorDesc &desc = var_desc.Tensor_desc();
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
781

Y
yangfei 已提交
782
template <>
783 784
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
785 786 787
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
788
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
789
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
790
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
791
          continue;
L
liuruilong 已提交
792
        } else {
793
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
794
        }
L
liuruilong 已提交
795

Y
yangfei 已提交
796
        char *origin_data =
L
liuruilong 已提交
797
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
798
        char *data = origin_data;
Y
yangfei 已提交
799
        cl_context context = program_.scope->GetCLScpoe()->Context();
800
        const TensorDesc &desc = var_desc->Tensor_desc();
801 802 803 804 805
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
806
        float *tensorInput = static_cast<float *>(
807 808
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
809

810
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
811

L
liuruilong 已提交
812 813
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
814

815
        delete origin_data;
Y
yangfei 已提交
816
        paddle_mobile::memory::Free(tensorInput);
817
      } else {
818 819
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
820
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
821 822
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
823

824 825 826
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
827
          DLOG << var_desc->Name();
L
liuruilong 已提交
828
          cl_image->InitEmptyImage(context, command_queue, ddim);
829
        }
Y
yangfei 已提交
830 831 832 833
      }
    }
  }
}
834

Y
yangfei 已提交
835
template <>
836
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
837 838
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
839 840
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
841 842
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
843
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
844 845
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
846
    self_alloc = true;
L
liuruilong 已提交
847
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
848 849
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
850
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
851

852
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
853 854 855
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
856
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
857
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
858
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
859
          continue;
L
liuruilong 已提交
860
        } else {
861
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
862 863 864 865
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

866 867
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
868 869 870 871 872

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
873 874 875
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
876 877 878 879

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

880 881
        paddle_mobile::memory::Free(tensorInput);
      } else {
882
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
883
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
884 885
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
886 887 888
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
889
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
890 891 892
      }
    }
  }
Y
yangfei 已提交
893
  if (self_alloc) {
894
    delete data;
Y
yangfei 已提交
895
  }
Y
yangfei 已提交
896
  LOG(kLOG_INFO) << " end init combine memory ";
897
}
Y
yangfei 已提交
898 899 900

#endif

901
template class Executor<CPU, float>;
Y
yangfei 已提交
902

903
template class Executor<FPGA, float>;
W
wangliu 已提交
904

905
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
906

907
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
908 909

}  // namespace framework
W
wangliu 已提交
910
}  // namespace paddle_mobile