conv_int8_compute_test.cc 28.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/core/context.h"
18
#include "lite/core/profile/timer.h"
19 20 21 22 23 24 25 26
#include "lite/operators/op_params.h"
#include "lite/tests/utils/naive_math_impl.h"
#include "lite/tests/utils/tensor_utils.h"

#ifdef LITE_WITH_ARM
#include "lite/kernels/arm/conv_compute.h"
#endif  // LITE_WITH_ARM

27 28 29 30 31 32 33
DEFINE_int32(power_mode,
             3,
             "power mode: "
             "0 for POWER_HIGH;"
             "1 for POWER_LOW;"
             "2 for POWER_FULL;"
             "3 for NO_BIND");
34 35 36
DEFINE_int32(threads, 1, "threads num");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
37
DEFINE_bool(basic_test, true, "do all tests");
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
DEFINE_bool(check_result, true, "check the result");

DEFINE_int32(batch, 1, "batch size");
DEFINE_int32(in_channel, 32, "input channel");
DEFINE_int32(in_height, 112, "input height");
DEFINE_int32(in_width, 112, "input width");

DEFINE_int32(out_channel, 32, "output channel");
DEFINE_int32(group, 1, "group");
DEFINE_int32(kernel_h, 3, "kernel height");
DEFINE_int32(kernel_w, 3, "kernel width");
DEFINE_int32(pad_h, 1, "pad height");
DEFINE_int32(pad_w, 1, "pad width");
DEFINE_int32(stride_h, 1, "stride height");
DEFINE_int32(stride_w, 1, "stride width");
DEFINE_int32(dila_h, 1, "dilation height");
DEFINE_int32(dila_w, 1, "dilation width");

C
chenjiaoAngel 已提交
56
DEFINE_bool(flag_act, true, "do act");
57
DEFINE_bool(flag_bias, true, "with bias");
C
chenjiaoAngel 已提交
58 59
DEFINE_double(clipped_coef, 1.0, "clipped relu coef");
DEFINE_double(leakey_relu_alpha, 8.88, "leakey relu alpha");
60 61 62 63

typedef paddle::lite::DDim DDim;
typedef paddle::lite::Tensor Tensor;
typedef paddle::lite::operators::ConvParam ConvParam;
C
chenjiaoAngel 已提交
64
typedef paddle::lite::operators::ActivationParam ActivationParam;
65
using paddle::lite::profile::Timer;
66 67 68

DDim compute_out_dim(const DDim& dim_in,
                     const paddle::lite::operators::ConvParam& param) {
H
HappyAngel 已提交
69 70
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
71 72 73 74 75 76
  DDim dim_out = dim_in;
  dim_out[1] = param.filter->dims()[0];
  auto kernel_h = param.filter->dims()[2];
  auto kernel_w = param.filter->dims()[3];
  auto h = dim_in[2];
  auto w = dim_in[3];
H
HappyAngel 已提交
77 78
  int dila_h = dilations[0];
  int dila_w = dilations[1];
79 80 81
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
  auto kernel_exten = dila_h * (kernel_h - 1) + 1;
H
HappyAngel 已提交
82
  auto hout = (h + paddings[0] + paddings[1] - kernel_exten) / stride_h + 1;
83
  kernel_exten = dila_w * (kernel_w - 1) + 1;
H
HappyAngel 已提交
84
  auto wout = (w + paddings[2] + paddings[3] - kernel_exten) / stride_w + 1;
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  dim_out[2] = hout;
  dim_out[3] = wout;
  return dim_out;
}

template <paddle::lite::PrecisionType ptype>
void get_conv_param(const DDim& dim_w,
                    int g,
                    const std::vector<int>& strides,
                    const std::vector<int>& pads,
                    const std::vector<int>& dila,
                    bool flag_bias,
                    bool flag_relu,
                    ConvParam* param) {
  param->x = new Tensor;
  param->x->set_precision(PRECISION(kInt8));
  param->filter = new Tensor;
  param->filter->Resize(dim_w);
  param->filter->set_precision(PRECISION(kInt8));
  if (flag_bias) {
    param->bias = new Tensor;
    param->bias->Resize({dim_w[0]});
    param->bias->set_precision(PRECISION(kFloat));
  }
  param->strides = strides;
H
HappyAngel 已提交
110 111
  param->paddings = std::make_shared<std::vector<int>>(pads);
  param->dilations = std::make_shared<std::vector<int>>(dila);
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  param->fuse_relu = flag_relu;
  param->groups = g;

  param->output = new Tensor;
  param->output->set_precision(ptype);
}

void release_param(ConvParam* param) {
  delete param->x;
  delete param->filter;
  delete param->output;
  delete param->bias;
}

#ifdef LITE_WITH_ARM
#include "lite/backends/arm/math/funcs.h"
void test_conv_int8(const std::vector<DDim>& input_dims,
                    const DDim& weight_dim,
                    int group,
                    const std::vector<int>& strides,
                    const std::vector<int>& pads,
                    const std::vector<int>& dilas,
                    bool flag_bias,
C
chenjiaoAngel 已提交
135
                    int flag_act,
136
                    const std::vector<int>& thread_num,
C
chenjiaoAngel 已提交
137 138 139
                    const std::vector<int>& power_mode,
                    const float six = 6.f,
                    const float alpha = 1.f) {
140 141 142 143 144 145 146 147 148 149
  paddle::lite::DeviceInfo::Init();
  ConvParam param_int8_out;
  ConvParam param_fp32_out;

  get_conv_param<PRECISION(kInt8)>(weight_dim,
                                   group,
                                   strides,
                                   pads,
                                   dilas,
                                   flag_bias,
C
chenjiaoAngel 已提交
150
                                   flag_act > 0,
151 152 153 154 155 156 157 158
                                   &param_int8_out);

  get_conv_param<PRECISION(kFloat)>(weight_dim,
                                    group,
                                    strides,
                                    pads,
                                    dilas,
                                    flag_bias,
C
chenjiaoAngel 已提交
159
                                    flag_act > 0,
160 161 162 163 164 165 166 167 168 169 170 171 172
                                    &param_fp32_out);
  Tensor weight_fp32;
  Tensor bias_fp32;
  weight_fp32.Resize(weight_dim);
  paddle::lite::fill_tensor_rand(*param_int8_out.filter, -127, 127);
  param_fp32_out.filter->CopyDataFrom(*param_int8_out.filter);
  if (flag_bias) {
    auto dim_b = param_int8_out.bias->dims();
    bias_fp32.Resize(dim_b);
    paddle::lite::fill_tensor_rand(*param_int8_out.bias, -1.f, 1.f);
    param_fp32_out.bias->CopyDataFrom(*param_int8_out.bias);
    bias_fp32.CopyDataFrom(*param_int8_out.bias);
  }
C
chenjiaoAngel 已提交
173 174 175 176 177 178
  if (flag_act > 0) {
    ActivationParam act_param;
    act_param.has_active = true;
    act_param.active_type = (paddle::lite_api::ActivationType)
        flag_act;  // 1-relu, 2-relu6, 4-leakyrelu
    if (flag_act == 1) {
C
chenjiaoAngel 已提交
179 180
      param_fp32_out.fuse_relu = true;
      param_int8_out.fuse_relu = true;
C
chenjiaoAngel 已提交
181 182 183
    } else if (flag_act == 2) {
      act_param.Relu_clipped_coef = six;
    } else if (flag_act == 4) {
C
chenjiaoAngel 已提交
184
      act_param.Leaky_relu_alpha = alpha;
C
chenjiaoAngel 已提交
185
    }
C
chenjiaoAngel 已提交
186 187
    param_fp32_out.activation_param = act_param;
    param_int8_out.activation_param = act_param;
C
chenjiaoAngel 已提交
188
  }
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

  std::vector<float> scale_in{1.f / 127};
  std::vector<float> scale_out{weight_dim.count(1, 4) / 127.f};
  std::vector<float> scale_w(weight_dim[0], 1.f / 127);

  param_int8_out.input_scale = scale_in[0];
  param_int8_out.output_scale = scale_out[0];
  param_int8_out.weight_scale = scale_w;

  param_fp32_out.input_scale = scale_in[0];
  param_fp32_out.output_scale = scale_out[0];
  param_fp32_out.weight_scale = scale_w;

  auto wptr_fp32 = weight_fp32.mutable_data<float>();
  auto bptr_fp32 = flag_bias ? bias_fp32.data<float>() : nullptr;

  paddle::lite::arm::math::int8_to_fp32(param_int8_out.filter->data<int8_t>(),
                                        wptr_fp32,
                                        scale_w.data(),
                                        weight_dim[0],
                                        1,
                                        weight_dim.count(1, 4));

212
  for (auto& cls : power_mode) {
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    for (auto& th : thread_num) {
      std::unique_ptr<paddle::lite::KernelContext> ctx1(
          new paddle::lite::KernelContext);
      std::unique_ptr<paddle::lite::KernelContext> ctx2(
          new paddle::lite::KernelContext);
      auto& ctx_tmp1 = ctx1->As<paddle::lite::ARMContext>();
      ctx_tmp1.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), th);
      auto& ctx_tmp2 = ctx2->As<paddle::lite::ARMContext>();
      ctx_tmp2.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), th);

      paddle::lite::kernels::arm::ConvCompute<PRECISION(kInt8),
                                              PRECISION(kInt8)>
          conv_int8_int8;
      paddle::lite::kernels::arm::ConvCompute<PRECISION(kInt8),
                                              PRECISION(kFloat)>
          conv_int8_fp32;
      conv_int8_int8.SetContext(std::move(ctx1));
      conv_int8_fp32.SetContext(std::move(ctx2));

      /// set param and context
      for (auto& dim_in : input_dims) {
        param_int8_out.x->Resize(dim_in);
        DDim out_tmp_dims = compute_out_dim(dim_in, param_int8_out);
        if (out_tmp_dims[2] < 1 || out_tmp_dims[3] < 1) {
          continue;
        }
        param_fp32_out.x->Resize(dim_in);
        param_int8_out.output->Resize(out_tmp_dims);
        param_fp32_out.output->Resize(out_tmp_dims);
        break;
      }
      conv_int8_int8.SetParam(param_int8_out);
      conv_int8_fp32.SetParam(param_fp32_out);
      /// prepare for run
      conv_int8_int8.PrepareForRun();
      conv_int8_fp32.PrepareForRun();

      for (auto& dim_in : input_dims) {
        CHECK_EQ(weight_dim[1] * group, dim_in[1])
            << "input channel must equal to weights channel";
        DDim dim_out = compute_out_dim(dim_in, param_int8_out);
        if (dim_out[2] < 1 || dim_out[3] < 1) {
          continue;
        }
        delete param_fp32_out.output;
        param_fp32_out.output = new Tensor;
        param_fp32_out.output->set_precision(PRECISION(kFloat));
        delete param_int8_out.output;
        param_int8_out.output = new Tensor;
        param_int8_out.output->set_precision(PRECISION(kInt8));

        param_int8_out.x->Resize(dim_in);
        param_int8_out.output->Resize(dim_out);
        param_fp32_out.x->Resize(dim_in);
        param_fp32_out.output->Resize(dim_out);

        Tensor tin_fp32;
        tin_fp32.Resize(dim_in);
        tin_fp32.set_precision(PRECISION(kFloat));
        Tensor tout_basic_fp32;
        Tensor tout_basic_int8;

        paddle::lite::fill_tensor_rand(*param_int8_out.x, -127, 127);
        param_fp32_out.x->CopyDataFrom(*param_int8_out.x);

        auto din_fp32 = tin_fp32.mutable_data<float>();
        paddle::lite::arm::math::int8_to_fp32(param_int8_out.x->data<int8_t>(),
                                              din_fp32,
                                              scale_in.data(),
                                              1,
                                              1,
                                              dim_in.production());

        if (FLAGS_check_result) {
          tout_basic_fp32.set_precision(PRECISION(kFloat));
          tout_basic_fp32.Resize(dim_out);
          tout_basic_int8.set_precision(PRECISION(kInt8));
          tout_basic_int8.Resize(dim_out);
          fill_tensor_const(tout_basic_fp32, 0.f);
          auto dout_basic_fp32 = tout_basic_fp32.mutable_data<float>();
          auto dout_basic_int8 = tout_basic_int8.mutable_data<int8_t>();
          conv_basic<float, float>(din_fp32,
                                   dout_basic_fp32,
                                   dim_in[0],
                                   dim_out[1],
                                   dim_out[2],
                                   dim_out[3],
                                   dim_in[1],
                                   dim_in[2],
                                   dim_in[3],
                                   wptr_fp32,
                                   bptr_fp32,
                                   group,
                                   weight_dim[3],
                                   weight_dim[2],
                                   strides[1],
                                   strides[0],
                                   dilas[1],
                                   dilas[0],
H
HappyAngel 已提交
312
                                   pads[2],
313 314
                                   pads[0],
                                   flag_bias,
C
chenjiaoAngel 已提交
315 316 317
                                   flag_act,
                                   six,
                                   alpha);
318 319 320 321 322 323
          paddle::lite::arm::math::fp32_to_int8(dout_basic_fp32,
                                                dout_basic_int8,
                                                scale_out.data(),
                                                1,
                                                1,
                                                dim_out.production());
C
chenjiaoAngel 已提交
324 325 326
          if (flag_act == 2) { // relu6
             for (int i = 0; i < dim_out.production(); i++) {
                 dout_basic_int8[i] = dout_basic_int8[i] > six ? six : dout_basic_int8[i];
C
chenjiaoAngel 已提交
327
                 dout_basic_fp32[i] = dout_basic_fp32[i] > six ? six : dout_basic_fp32[i];
C
chenjiaoAngel 已提交
328
             }
C
fix ut  
chenjiaoAngel 已提交
329
         }
330 331 332 333 334 335 336 337
        }
        double gops = 2.0 * dim_out.production() * dim_in[1] * weight_dim[2] *
                      weight_dim[3] / group;
        /// warm up
        for (int i = 0; i < FLAGS_warmup; ++i) {
          conv_int8_int8.Launch();
        }
        /// compute fp32 output
338
        Timer t0;
339
        for (int i = 0; i < FLAGS_repeats; ++i) {
340
          t0.Start();
341
          conv_int8_fp32.Launch();
342
          t0.Stop();
343 344
        }
        LOG(INFO) << "int8 conv, fp32 output: output shape" << dim_out
345 346
                  << ",running time, avg: " << t0.LapTimes().Avg()
                  << ", min time: " << t0.LapTimes().Min()
347
                  << ", total GOPS: " << 1e-9 * gops
348 349
                  << " GOPS, avg GOPs: " << 1e-6 * gops / t0.LapTimes().Avg()
                  << " GOPs, max GOPs: " << 1e-6 * gops / t0.LapTimes().Min();
350 351

        /// compute int8 output
352
        t0.Reset();
353
        for (int i = 0; i < FLAGS_repeats; ++i) {
354
          t0.Start();
355
          conv_int8_int8.Launch();
356
          t0.Stop();
357 358
        }
        LOG(INFO) << "int8 conv, int8 output: output shape" << dim_out
359 360
                  << ",running time, avg: " << t0.LapTimes().Avg()
                  << ", min time: " << t0.LapTimes().Min()
361
                  << ", total GOPS: " << 1e-9 * gops
362 363
                  << " GOPS, avg GOPs: " << 1e-6 * gops / t0.LapTimes().Avg()
                  << " GOPs, max GOPs: " << 1e-6 * gops / t0.LapTimes().Min();
364 365 366 367 368 369 370 371 372 373 374 375 376

        /// compare result fp32 output
        if (FLAGS_check_result) {
          double max_ratio = 0;
          double max_diff = 0;
          tensor_cmp_host(
              tout_basic_fp32, *param_fp32_out.output, max_ratio, max_diff);
          LOG(INFO) << "FP32 compare result, max diff: " << max_diff
                    << ", max ratio: " << max_ratio;
          if (std::abs(max_ratio) > 1e-5f) {
            if (max_diff > 5e-5f) {
              LOG(WARNING) << "basic result";
              print_tensor(tout_basic_fp32);
X
Xiaoyang LI 已提交
377
              LOG(WARNING) << "lite result";
378 379 380 381 382 383 384 385 386 387 388
              print_tensor(*param_fp32_out.output);
              Tensor tdiff;
              tdiff.Resize(tout_basic_fp32.dims());
              tdiff.set_precision(PRECISION(kFloat));
              tensor_diff(tout_basic_fp32, *param_fp32_out.output, tdiff);
              print_tensor(tdiff);
              release_param(&param_int8_out);
              release_param(&param_fp32_out);
              LOG(FATAL) << "test int8 conv, fp32 out: input: " << dim_in
                         << ", output: " << dim_out
                         << ", weight dim: " << weight_dim
H
HappyAngel 已提交
389 390
                         << ", pad: " << pads[0] << ", " << pads[1] << ", "
                         << pads[2] << ", " << pads[3]
391 392
                         << ", stride: " << strides[0] << ", " << strides[1]
                         << ", dila_: " << dilas[0] << ", " << dilas[1]
393
                         << ", group: " << group
394
                         << ", bias: " << (flag_bias ? "true" : "false")
C
chenjiaoAngel 已提交
395 396
                         << ", act: " << flag_act << ", threads: " << th
                         << ", power_mode: " << cls << " failed!!\n";
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
            }
          }
        }
        /// compare result int8 output
        if (FLAGS_check_result) {
          double max_ratio = 0;
          double max_diff = 0;
          // ! int8
          tensor_cmp_host(
              tout_basic_int8, *param_int8_out.output, max_ratio, max_diff);
          LOG(INFO) << "int8 compare result, max diff: " << max_diff
                    << ", max ratio: " << max_ratio;
          if (fabs(max_diff) > 0) {
            Tensor tdiff;
            tdiff.Resize(tout_basic_int8.dims());
            tdiff.set_precision(PRECISION(kInt8));
            tensor_diff(tout_basic_int8, *param_int8_out.output, tdiff);
            auto ptr = tdiff.data<int8_t>();
            auto ptr_basic_fp32 = tout_basic_fp32.data<float>();
            float count = 0;
            bool check = true;
            for (int i = 0; i < tdiff.numel(); ++i) {
              if (abs(ptr[i]) > 1) {
                check = false;
                LOG(ERROR) << "basic float data: " << ptr_basic_fp32[i]
                           << ", after scale: "
                           << ptr_basic_fp32[i] / scale_out[0];
                break;
              }
              if (ptr[i] != 0) {
                LOG(ERROR) << "basic float data: " << ptr_basic_fp32[i]
                           << ", after scale: "
                           << ptr_basic_fp32[i] / scale_out[0];
                count += 1;
              }
            }
            check =
                check &&
                count < std::max(10, static_cast<int>(0.01 * tdiff.numel()));
            if (!check) {
              LOG(WARNING) << "int8 basic result";
              print_tensor(tout_basic_int8);
X
Xiaoyang LI 已提交
439
              LOG(WARNING) << "int8 lite result";
440 441 442 443 444 445 446 447
              print_tensor(*param_int8_out.output);
              LOG(WARNING) << "int8 diff tensor";
              print_tensor(tdiff);
              release_param(&param_int8_out);
              release_param(&param_fp32_out);
              LOG(FATAL) << "test int8 conv, int8 out: input: " << dim_in
                         << ", output: " << dim_out
                         << ", weight dim: " << weight_dim
H
HappyAngel 已提交
448 449
                         << ", pad: " << pads[0] << ", " << pads[1] << ", "
                         << pads[2] << ", " << pads[3]
450 451 452
                         << ", stride: " << strides[0] << ", " << strides[1]
                         << ", dila_: " << dilas[0] << ", " << dilas[1]
                         << ", bias: " << (flag_bias ? "true" : "false")
C
chenjiaoAngel 已提交
453 454
                         << ", act: " << flag_act << ", threads: " << th
                         << ", power_mode: " << cls << " failed!!\n";
455 456 457 458 459
            }
          }
        }
        LOG(INFO) << "test int8 conv: input: " << dim_in
                  << ", output: " << dim_out << ", weight dim: " << weight_dim
H
HappyAngel 已提交
460 461 462
                  << ", pad: " << pads[0] << ", " << pads[1] << ", " << pads[2]
                  << ", " << pads[3] << ", stride: " << strides[0] << ", "
                  << strides[1] << ", dila_: " << dilas[0] << ", " << dilas[1]
463
                  << ", bias: " << (flag_bias ? "true" : "false")
C
chenjiaoAngel 已提交
464 465
                  << ", act: " << flag_act << ", threads: " << th
                  << ", power_mode: " << cls << " successed!!\n";
466 467 468 469 470 471 472 473 474 475 476 477 478 479
      }
    }
  }
  release_param(&param_int8_out);
  release_param(&param_fp32_out);
}
#else
void test_conv_int8(const std::vector<DDim>& input_dims,
                    const DDim& weight_dim,
                    int group,
                    const std::vector<int>& strides,
                    const std::vector<int>& pads,
                    const std::vector<int>& dilas,
                    bool flag_bias,
C
chenjiaoAngel 已提交
480
                    int flag_act,
481
                    const std::vector<int>& thread_num,
C
chenjiaoAngel 已提交
482 483 484
                    const std::vector<int>& power_mode,
                    float six = 6.f,
                    float alpha = 1.f) {}
485 486
#endif  // LITE_WITH_ARM

C
fix ut  
chenjiaoAngel 已提交
487
#if 1  /// 3x3dw
488 489 490 491 492
TEST(TestConv3x3DWInt8, test_conv3x3_depthwise) {
  if (FLAGS_basic_test) {
    for (auto& stride : {1, 2}) {
      for (auto& pad : {0, 1}) {
        for (auto& flag_bias : {false, true}) {
C
chenjiaoAngel 已提交
493
          for (auto& flag_act : {0, 1}) {
494 495 496 497
            for (auto& c : {1, 3, 5, 8, 16, 32}) {
              std::vector<DDim> dims;
              DDim weights_dim({c, 1, 3, 3});
              for (auto& batch : {1, 2}) {
498
                for (auto& h : {1, 3, 15, 33}) {
499 500 501 502 503 504 505
                  dims.push_back(DDim({batch, c, h, h}));
                }
              }
              test_conv_int8(dims,
                             weights_dim,
                             c,
                             {stride, stride},
H
HappyAngel 已提交
506
                             {pad, pad, pad, pad},
507 508
                             {1, 1},
                             flag_bias,
C
chenjiaoAngel 已提交
509
                             flag_act,
510
                             {4},
C
chenjiaoAngel 已提交
511 512 513
                             {FLAGS_power_mode},
                             FLAGS_clipped_coef,
                             FLAGS_leakey_relu_alpha);
514 515 516 517 518 519 520 521 522
            }
          }
        }
      }
    }
  }
}
#endif  /// 3x3dw

C
fix ut  
chenjiaoAngel 已提交
523
#if 1  /// 5x5dw
524 525
TEST(TestConv5x5DWInt8, test_conv5x5_depthwise) {
  if (FLAGS_basic_test) {
526
    for (auto& stride : {1, 2}) {
527
      for (auto& pad : {0, 1, 2, 3, 4}) {
528
        for (auto& flag_bias : {false, true}) {
C
chenjiaoAngel 已提交
529
          for (auto& flag_act: {0, 1}) {
530
            for (auto& c : {1, 5, 15, 33}) {
531 532 533
              std::vector<DDim> dims;
              DDim weights_dim({c, 1, 5, 5});
              for (auto& batch : {1, 2}) {
534
                for (auto& h : {1, 3, 15, 33, 112, 224}) {
535 536 537 538 539 540 541
                  dims.push_back(DDim({batch, c, h, h}));
                }
              }
              test_conv_int8(dims,
                             weights_dim,
                             c,
                             {stride, stride},
H
HappyAngel 已提交
542
                             {pad, pad, pad, pad},
543 544
                             {1, 1},
                             flag_bias,
C
chenjiaoAngel 已提交
545
                             flag_act,
546
                             {1, 4},
C
chenjiaoAngel 已提交
547 548 549
                             {FLAGS_power_mode},
                             FLAGS_clipped_coef,
                             FLAGS_leakey_relu_alpha);
550 551 552 553 554 555 556 557 558
            }
          }
        }
      }
    }
  }
}
#endif  /// 5x5dw

559
#if 1  /// conv1x1s1
560 561
TEST(TestConv1x1s1Int8, test_conv1x1s1) {
  if (FLAGS_basic_test) {
562 563
    for (auto& cin : {1, 3, 8, 32}) {
      for (auto& cout : {1, 5, 17}) {
564 565
        for (auto& g : {1, 2}) {
          for (auto& flag_bias : {false, true}) {
C
fix ut  
chenjiaoAngel 已提交
566
            for (auto& flag_act : {0, 1, 2, 4}) {
567 568 569 570 571 572
              std::vector<DDim> dims;
              if (cin % g != 0 || cout % g != 0) {
                continue;
              }
              DDim weights_dim({cout, cin / g, 1, 1});
              for (auto& batch : {1, 2}) {
573
                for (auto& h : {1, 9, 16, 33}) {
574 575 576 577 578 579 580
                  dims.push_back(DDim({batch, cin, h, h}));
                }
              }
              test_conv_int8(dims,
                             weights_dim,
                             g,
                             {1, 1},
H
HappyAngel 已提交
581
                             {0, 0, 0, 0},
582 583
                             {1, 1},
                             flag_bias,
C
chenjiaoAngel 已提交
584
                             flag_act,
585
                             {4},
C
chenjiaoAngel 已提交
586 587 588
                             {FLAGS_power_mode},
                             FLAGS_clipped_coef,
                             FLAGS_leakey_relu_alpha);
589 590 591 592 593 594 595 596 597
            }
          }
        }
      }
    }
  }
}
#endif  /// conv1x1s1

C
fix ut  
chenjiaoAngel 已提交
598
#if 1  /// conv3x3s1
599 600
TEST(TestConv3x3s1Int8, test_conv_3x3s1) {
  if (FLAGS_basic_test) {
601 602
    for (auto& cin : {1, 3, 8, 33}) {
      for (auto& cout : {1, 5, 33}) {
H
HappyAngel 已提交
603 604 605 606 607
        for (auto& pad_top : {1, 2}) {
          for (auto& pad_bottom : {1, 2}) {
            for (auto& pad_left : {1, 2}) {
              for (auto& pad_right : {1, 2}) {
                for (auto& flag_bias : {false, true}) {
C
chenjiaoAngel 已提交
608
                  for (auto& flag_act : {0, 1}) {
H
HappyAngel 已提交
609 610 611
                    std::vector<DDim> dims;
                    DDim weights_dim({cout, cin, 3, 3});
                    for (auto& batch : {1, 2}) {
612
                      for (auto& h : {1, 7, 17, 33}) {
H
HappyAngel 已提交
613 614 615 616 617 618 619 620 621 622
                        dims.push_back(DDim({batch, cin, h, h}));
                      }
                    }
                    test_conv_int8(dims,
                                   weights_dim,
                                   1,
                                   {1, 1},
                                   {pad_top, pad_bottom, pad_left, pad_right},
                                   {1, 1},
                                   flag_bias,
C
chenjiaoAngel 已提交
623
                                   flag_act,
624
                                   {4},
C
chenjiaoAngel 已提交
625 626 627
                                   {FLAGS_power_mode},
                                   FLAGS_clipped_coef,
                                   FLAGS_leakey_relu_alpha);
H
HappyAngel 已提交
628
                  }
629 630 631 632 633 634 635 636 637 638 639
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// conv3x3s1

C
fix ut  
chenjiaoAngel 已提交
640
#if 1  /// conv3x3s2
641 642
TEST(TestConv3x3s2Int8, test_conv_3x3s2) {
  if (FLAGS_basic_test) {
643 644
    for (auto& cin : {1, 3, 31}) {
      for (auto& cout : {1, 5, 33}) {
H
HappyAngel 已提交
645 646 647 648 649
        for (auto& pad_top : {1, 2}) {
          for (auto& pad_bottom : {1, 2}) {
            for (auto& pad_left : {1, 2}) {
              for (auto& pad_right : {1, 2}) {
                for (auto& flag_bias : {false, true}) {
C
chenjiaoAngel 已提交
650
                  for (auto& flag_act : {0, 1}) {
H
HappyAngel 已提交
651 652 653
                    std::vector<DDim> dims;
                    DDim weights_dim({cout, cin, 3, 3});
                    for (auto& batch : {1, 2}) {
654
                      for (auto& h : {1, 7, 19, 33}) {
H
HappyAngel 已提交
655 656 657 658 659 660 661 662 663 664
                        dims.push_back(DDim({batch, cin, h, h}));
                      }
                    }
                    test_conv_int8(dims,
                                   weights_dim,
                                   1,
                                   {2, 2},
                                   {pad_top, pad_bottom, pad_left, pad_right},
                                   {1, 1},
                                   flag_bias,
C
chenjiaoAngel 已提交
665
                                   flag_act,
666
                                   {4},
C
chenjiaoAngel 已提交
667 668 669
                                   {FLAGS_power_mode},
                                   FLAGS_clipped_coef,
                                   FLAGS_leakey_relu_alpha);
H
HappyAngel 已提交
670
                  }
671 672 673 674 675 676 677 678 679 680 681
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// conv3x3s2

682
#if 0   /// random param conv
683 684
TEST(TestConvRandInt8, test_conv_rand) {
  if (FLAGS_basic_test) {
685 686
    for (auto& cin : {1, 17}) {
      for (auto& cout : {1, 8, 17}) {
687 688 689 690
        for (auto& g : {1, 2}) {
          for (auto& kw : {1, 2, 3}) {
            for (auto& kh : {1, 2, 3}) {
              for (auto& stride : {1, 2}) {
H
HappyAngel 已提交
691 692 693 694 695 696
                for (auto& pad_top : {0, 1, 2}) {
                  for (auto& pad_bottom : {0, 1, 2}) {
                    for (auto& pad_left : {0, 1, 2}) {
                      for (auto& pad_right : {0, 1, 2}) {
                        for (auto& dila : {1, 2}) {
                          for (auto& flag_bias : {false, true}) {
C
chenjiaoAngel 已提交
697
                            for (auto& flag_act : {0, 1, 2, 4}) {
H
HappyAngel 已提交
698
                              if (cin % g != 0 || cout % g != 0) {
699
                                break;
H
HappyAngel 已提交
700 701 702 703
                              }
                              std::vector<DDim> dims;
                              DDim weights_dim({cout, cin / g, kh, kw});
                              for (auto& batch : {1, 2}) {
704
                                for (auto& h : {1, 3, 5, 19}) {
H
HappyAngel 已提交
705 706 707 708 709 710 711 712 713 714 715
                                  dims.push_back(DDim({batch, cin, h, h}));
                                }
                              }
                              test_conv_int8(
                                  dims,
                                  weights_dim,
                                  g,
                                  {stride, stride},
                                  {pad_top, pad_bottom, pad_left, pad_right},
                                  {dila, dila},
                                  flag_bias,
C
chenjiaoAngel 已提交
716
                                  flag_act,
717
                                  {4},
C
chenjiaoAngel 已提交
718 719 720
                                  {FLAGS_power_mode},
                                  FLAGS_clipped_coef,
                                  FLAGS_leakey_relu_alpha);
H
HappyAngel 已提交
721
                            }
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
                          }
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// random param conv

#if 1  /// custom
TEST(TestConvCustomInt8, test_conv_custom_size) {
  CHECK_EQ(FLAGS_in_channel % FLAGS_group, 0)
      << "input channel must be divided by group";
  CHECK_EQ(FLAGS_out_channel % FLAGS_group, 0)
      << "num_output must be divided by group";
  test_conv_int8(
      {DDim({FLAGS_batch, FLAGS_in_channel, FLAGS_in_height, FLAGS_in_width})},
      DDim({FLAGS_out_channel,
            FLAGS_in_channel / FLAGS_group,
            FLAGS_kernel_h,
            FLAGS_kernel_w}),
      FLAGS_group,
      {FLAGS_stride_h, FLAGS_stride_w},
H
HappyAngel 已提交
752
      {FLAGS_pad_h, FLAGS_pad_h, FLAGS_pad_w, FLAGS_pad_w},
753 754
      {FLAGS_dila_h, FLAGS_dila_w},
      FLAGS_flag_bias,
C
chenjiaoAngel 已提交
755
      FLAGS_flag_act,
756
      {FLAGS_threads},
C
chenjiaoAngel 已提交
757 758 759
      {FLAGS_power_mode},
      FLAGS_clipped_coef,
      FLAGS_leakey_relu_alpha);
760 761
}
#endif  // custom