conv_int8_compute_test.cc 25.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/core/context.h"
#include "lite/operators/op_params.h"
#include "lite/tests/utils/naive_math_impl.h"
#include "lite/tests/utils/tensor_utils.h"
#include "lite/tests/utils/timer.h"

#ifdef LITE_WITH_ARM
#include "lite/kernels/arm/conv_compute.h"
#endif  // LITE_WITH_ARM

27 28 29 30 31 32 33
DEFINE_int32(power_mode,
             3,
             "power mode: "
             "0 for POWER_HIGH;"
             "1 for POWER_LOW;"
             "2 for POWER_FULL;"
             "3 for NO_BIND");
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
DEFINE_int32(threads, 1, "threads num");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
DEFINE_bool(basic_test, false, "do all tests");
DEFINE_bool(check_result, true, "check the result");

DEFINE_int32(batch, 1, "batch size");
DEFINE_int32(in_channel, 32, "input channel");
DEFINE_int32(in_height, 112, "input height");
DEFINE_int32(in_width, 112, "input width");

DEFINE_int32(out_channel, 32, "output channel");
DEFINE_int32(group, 1, "group");
DEFINE_int32(kernel_h, 3, "kernel height");
DEFINE_int32(kernel_w, 3, "kernel width");
DEFINE_int32(pad_h, 1, "pad height");
DEFINE_int32(pad_w, 1, "pad width");
DEFINE_int32(stride_h, 1, "stride height");
DEFINE_int32(stride_w, 1, "stride width");
DEFINE_int32(dila_h, 1, "dilation height");
DEFINE_int32(dila_w, 1, "dilation width");

DEFINE_bool(flag_relu, true, "do relu");
DEFINE_bool(flag_bias, true, "with bias");

typedef paddle::lite::DDim DDim;
typedef paddle::lite::Tensor Tensor;
typedef paddle::lite::operators::ConvParam ConvParam;
62
using paddle::lite::Timer;
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

DDim compute_out_dim(const DDim& dim_in,
                     const paddle::lite::operators::ConvParam& param) {
  DDim dim_out = dim_in;
  dim_out[1] = param.filter->dims()[0];
  auto kernel_h = param.filter->dims()[2];
  auto kernel_w = param.filter->dims()[3];
  auto h = dim_in[2];
  auto w = dim_in[3];
  int dila_h = param.dilations[0];
  int dila_w = param.dilations[1];
  int pad_h = param.paddings[0];
  int pad_w = param.paddings[1];
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
  auto kernel_exten = dila_h * (kernel_h - 1) + 1;
  auto hout = (h + 2 * pad_h - kernel_exten) / stride_h + 1;
  kernel_exten = dila_w * (kernel_w - 1) + 1;
  auto wout = (w + 2 * pad_w - kernel_exten) / stride_w + 1;
  dim_out[2] = hout;
  dim_out[3] = wout;
  return dim_out;
}

template <paddle::lite::PrecisionType ptype>
void get_conv_param(const DDim& dim_w,
                    int g,
                    const std::vector<int>& strides,
                    const std::vector<int>& pads,
                    const std::vector<int>& dila,
                    bool flag_bias,
                    bool flag_relu,
                    ConvParam* param) {
  param->x = new Tensor;
  param->x->set_precision(PRECISION(kInt8));
  param->filter = new Tensor;
  param->filter->Resize(dim_w);
  param->filter->set_precision(PRECISION(kInt8));
  if (flag_bias) {
    param->bias = new Tensor;
    param->bias->Resize({dim_w[0]});
    param->bias->set_precision(PRECISION(kFloat));
  }
  param->strides = strides;
  param->paddings = pads;
  param->dilations = dila;
  param->fuse_relu = flag_relu;
  param->groups = g;

  param->output = new Tensor;
  param->output->set_precision(ptype);
}

void release_param(ConvParam* param) {
  delete param->x;
  delete param->filter;
  delete param->output;
  delete param->bias;
}

#ifdef LITE_WITH_ARM
#include "lite/backends/arm/math/funcs.h"
void test_conv_int8(const std::vector<DDim>& input_dims,
                    const DDim& weight_dim,
                    int group,
                    const std::vector<int>& strides,
                    const std::vector<int>& pads,
                    const std::vector<int>& dilas,
                    bool flag_bias,
                    bool flag_relu,
                    const std::vector<int>& thread_num,
134
                    const std::vector<int>& power_mode) {
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  paddle::lite::DeviceInfo::Init();
  ConvParam param_int8_out;
  ConvParam param_fp32_out;

  get_conv_param<PRECISION(kInt8)>(weight_dim,
                                   group,
                                   strides,
                                   pads,
                                   dilas,
                                   flag_bias,
                                   flag_relu,
                                   &param_int8_out);

  get_conv_param<PRECISION(kFloat)>(weight_dim,
                                    group,
                                    strides,
                                    pads,
                                    dilas,
                                    flag_bias,
                                    flag_relu,
                                    &param_fp32_out);
  Tensor weight_fp32;
  Tensor bias_fp32;
  weight_fp32.Resize(weight_dim);
  paddle::lite::fill_tensor_rand(*param_int8_out.filter, -127, 127);
  param_fp32_out.filter->CopyDataFrom(*param_int8_out.filter);
  if (flag_bias) {
    auto dim_b = param_int8_out.bias->dims();
    bias_fp32.Resize(dim_b);
    paddle::lite::fill_tensor_rand(*param_int8_out.bias, -1.f, 1.f);
    param_fp32_out.bias->CopyDataFrom(*param_int8_out.bias);
    bias_fp32.CopyDataFrom(*param_int8_out.bias);
  }

  std::vector<float> scale_in{1.f / 127};
  std::vector<float> scale_out{weight_dim.count(1, 4) / 127.f};
  std::vector<float> scale_w(weight_dim[0], 1.f / 127);

  param_int8_out.input_scale = scale_in[0];
  param_int8_out.output_scale = scale_out[0];
  param_int8_out.weight_scale = scale_w;

  param_fp32_out.input_scale = scale_in[0];
  param_fp32_out.output_scale = scale_out[0];
  param_fp32_out.weight_scale = scale_w;

  auto wptr_fp32 = weight_fp32.mutable_data<float>();
  auto bptr_fp32 = flag_bias ? bias_fp32.data<float>() : nullptr;

  paddle::lite::arm::math::int8_to_fp32(param_int8_out.filter->data<int8_t>(),
                                        wptr_fp32,
                                        scale_w.data(),
                                        weight_dim[0],
                                        1,
                                        weight_dim.count(1, 4));

191
  for (auto& cls : power_mode) {
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    for (auto& th : thread_num) {
      std::unique_ptr<paddle::lite::KernelContext> ctx1(
          new paddle::lite::KernelContext);
      std::unique_ptr<paddle::lite::KernelContext> ctx2(
          new paddle::lite::KernelContext);
      auto& ctx_tmp1 = ctx1->As<paddle::lite::ARMContext>();
      ctx_tmp1.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), th);
      auto& ctx_tmp2 = ctx2->As<paddle::lite::ARMContext>();
      ctx_tmp2.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), th);

      paddle::lite::kernels::arm::ConvCompute<PRECISION(kInt8),
                                              PRECISION(kInt8)>
          conv_int8_int8;
      paddle::lite::kernels::arm::ConvCompute<PRECISION(kInt8),
                                              PRECISION(kFloat)>
          conv_int8_fp32;
      conv_int8_int8.SetContext(std::move(ctx1));
      conv_int8_fp32.SetContext(std::move(ctx2));

      /// set param and context
      for (auto& dim_in : input_dims) {
        param_int8_out.x->Resize(dim_in);
        DDim out_tmp_dims = compute_out_dim(dim_in, param_int8_out);
        if (out_tmp_dims[2] < 1 || out_tmp_dims[3] < 1) {
          continue;
        }
        param_fp32_out.x->Resize(dim_in);
        param_int8_out.output->Resize(out_tmp_dims);
        param_fp32_out.output->Resize(out_tmp_dims);
        break;
      }
      conv_int8_int8.SetParam(param_int8_out);
      conv_int8_fp32.SetParam(param_fp32_out);
      /// prepare for run
      conv_int8_int8.PrepareForRun();
      conv_int8_fp32.PrepareForRun();

      for (auto& dim_in : input_dims) {
        CHECK_EQ(weight_dim[1] * group, dim_in[1])
            << "input channel must equal to weights channel";
        DDim dim_out = compute_out_dim(dim_in, param_int8_out);
        if (dim_out[2] < 1 || dim_out[3] < 1) {
          continue;
        }
        delete param_fp32_out.output;
        param_fp32_out.output = new Tensor;
        param_fp32_out.output->set_precision(PRECISION(kFloat));
        delete param_int8_out.output;
        param_int8_out.output = new Tensor;
        param_int8_out.output->set_precision(PRECISION(kInt8));

        param_int8_out.x->Resize(dim_in);
        param_int8_out.output->Resize(dim_out);
        param_fp32_out.x->Resize(dim_in);
        param_fp32_out.output->Resize(dim_out);

        Tensor tin_fp32;
        tin_fp32.Resize(dim_in);
        tin_fp32.set_precision(PRECISION(kFloat));
        Tensor tout_basic_fp32;
        Tensor tout_basic_int8;

        paddle::lite::fill_tensor_rand(*param_int8_out.x, -127, 127);
        param_fp32_out.x->CopyDataFrom(*param_int8_out.x);

        auto din_fp32 = tin_fp32.mutable_data<float>();
        paddle::lite::arm::math::int8_to_fp32(param_int8_out.x->data<int8_t>(),
                                              din_fp32,
                                              scale_in.data(),
                                              1,
                                              1,
                                              dim_in.production());

        if (FLAGS_check_result) {
          tout_basic_fp32.set_precision(PRECISION(kFloat));
          tout_basic_fp32.Resize(dim_out);
          tout_basic_int8.set_precision(PRECISION(kInt8));
          tout_basic_int8.Resize(dim_out);
          fill_tensor_const(tout_basic_fp32, 0.f);
          auto dout_basic_fp32 = tout_basic_fp32.mutable_data<float>();
          auto dout_basic_int8 = tout_basic_int8.mutable_data<int8_t>();
          conv_basic<float, float>(din_fp32,
                                   dout_basic_fp32,
                                   dim_in[0],
                                   dim_out[1],
                                   dim_out[2],
                                   dim_out[3],
                                   dim_in[1],
                                   dim_in[2],
                                   dim_in[3],
                                   wptr_fp32,
                                   bptr_fp32,
                                   group,
                                   weight_dim[3],
                                   weight_dim[2],
                                   strides[1],
                                   strides[0],
                                   dilas[1],
                                   dilas[0],
                                   pads[1],
                                   pads[0],
                                   flag_bias,
                                   flag_relu);
          paddle::lite::arm::math::fp32_to_int8(dout_basic_fp32,
                                                dout_basic_int8,
                                                scale_out.data(),
                                                1,
                                                1,
                                                dim_out.production());
        }

        double gops = 2.0 * dim_out.production() * dim_in[1] * weight_dim[2] *
                      weight_dim[3] / group;
        /// warm up
        for (int i = 0; i < FLAGS_warmup; ++i) {
          conv_int8_int8.Launch();
        }
        /// compute fp32 output
310
        Timer t0;
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
        for (int i = 0; i < FLAGS_repeats; ++i) {
          t0.start();
          conv_int8_fp32.Launch();
          t0.end();
        }
        LOG(INFO) << "int8 conv, fp32 output: output shape" << dim_out
                  << ",running time, avg: " << t0.get_average_ms()
                  << ", min time: " << t0.get_min_time()
                  << ", total GOPS: " << 1e-9 * gops
                  << " GOPS, avg GOPs: " << 1e-6 * gops / t0.get_average_ms()
                  << " GOPs, max GOPs: " << 1e-6 * gops / t0.get_min_time();

        /// compute int8 output
        t0.clear();
        for (int i = 0; i < FLAGS_repeats; ++i) {
          t0.start();
          conv_int8_int8.Launch();
          t0.end();
        }
        LOG(INFO) << "int8 conv, int8 output: output shape" << dim_out
                  << ",running time, avg: " << t0.get_average_ms()
                  << ", min time: " << t0.get_min_time()
                  << ", total GOPS: " << 1e-9 * gops
                  << " GOPS, avg GOPs: " << 1e-6 * gops / t0.get_average_ms()
                  << " GOPs, max GOPs: " << 1e-6 * gops / t0.get_min_time();

        /// compare result fp32 output
        if (FLAGS_check_result) {
          double max_ratio = 0;
          double max_diff = 0;
          tensor_cmp_host(
              tout_basic_fp32, *param_fp32_out.output, max_ratio, max_diff);
          LOG(INFO) << "FP32 compare result, max diff: " << max_diff
                    << ", max ratio: " << max_ratio;
          if (std::abs(max_ratio) > 1e-5f) {
            if (max_diff > 5e-5f) {
              LOG(WARNING) << "basic result";
              print_tensor(tout_basic_fp32);
X
Xiaoyang LI 已提交
349
              LOG(WARNING) << "lite result";
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
              print_tensor(*param_fp32_out.output);
              Tensor tdiff;
              tdiff.Resize(tout_basic_fp32.dims());
              tdiff.set_precision(PRECISION(kFloat));
              tensor_diff(tout_basic_fp32, *param_fp32_out.output, tdiff);
              print_tensor(tdiff);
              release_param(&param_int8_out);
              release_param(&param_fp32_out);
              LOG(FATAL) << "test int8 conv, fp32 out: input: " << dim_in
                         << ", output: " << dim_out
                         << ", weight dim: " << weight_dim
                         << ", pad: " << pads[0] << ", " << pads[1]
                         << ", stride: " << strides[0] << ", " << strides[1]
                         << ", dila_: " << dilas[0] << ", " << dilas[1]
                         << ", bias: " << (flag_bias ? "true" : "false")
                         << ", relu: " << (flag_relu ? "true" : "false")
366
                         << ", threads: " << th << ", power_mode: " << cls
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
                         << " failed!!\n";
            }
          }
        }
        /// compare result int8 output
        if (FLAGS_check_result) {
          double max_ratio = 0;
          double max_diff = 0;
          // ! int8
          tensor_cmp_host(
              tout_basic_int8, *param_int8_out.output, max_ratio, max_diff);
          LOG(INFO) << "int8 compare result, max diff: " << max_diff
                    << ", max ratio: " << max_ratio;
          if (fabs(max_diff) > 0) {
            Tensor tdiff;
            tdiff.Resize(tout_basic_int8.dims());
            tdiff.set_precision(PRECISION(kInt8));
            tensor_diff(tout_basic_int8, *param_int8_out.output, tdiff);
            auto ptr = tdiff.data<int8_t>();
            auto ptr_basic_fp32 = tout_basic_fp32.data<float>();
            float count = 0;
            bool check = true;
            for (int i = 0; i < tdiff.numel(); ++i) {
              if (abs(ptr[i]) > 1) {
                check = false;
                LOG(ERROR) << "basic float data: " << ptr_basic_fp32[i]
                           << ", after scale: "
                           << ptr_basic_fp32[i] / scale_out[0];
                break;
              }
              if (ptr[i] != 0) {
                LOG(ERROR) << "basic float data: " << ptr_basic_fp32[i]
                           << ", after scale: "
                           << ptr_basic_fp32[i] / scale_out[0];
                count += 1;
              }
            }
            check =
                check &&
                count < std::max(10, static_cast<int>(0.01 * tdiff.numel()));
            if (!check) {
              LOG(WARNING) << "int8 basic result";
              print_tensor(tout_basic_int8);
X
Xiaoyang LI 已提交
410
              LOG(WARNING) << "int8 lite result";
411 412 413 414 415 416 417 418 419 420 421 422 423
              print_tensor(*param_int8_out.output);
              LOG(WARNING) << "int8 diff tensor";
              print_tensor(tdiff);
              release_param(&param_int8_out);
              release_param(&param_fp32_out);
              LOG(FATAL) << "test int8 conv, int8 out: input: " << dim_in
                         << ", output: " << dim_out
                         << ", weight dim: " << weight_dim
                         << ", pad: " << pads[0] << ", " << pads[1]
                         << ", stride: " << strides[0] << ", " << strides[1]
                         << ", dila_: " << dilas[0] << ", " << dilas[1]
                         << ", bias: " << (flag_bias ? "true" : "false")
                         << ", relu: " << (flag_relu ? "true" : "false")
424
                         << ", threads: " << th << ", power_mode: " << cls
425 426 427 428 429 430 431 432 433 434 435
                         << " failed!!\n";
            }
          }
        }
        LOG(INFO) << "test int8 conv: input: " << dim_in
                  << ", output: " << dim_out << ", weight dim: " << weight_dim
                  << ", pad: " << pads[0] << ", " << pads[1]
                  << ", stride: " << strides[0] << ", " << strides[1]
                  << ", dila_: " << dilas[0] << ", " << dilas[1]
                  << ", bias: " << (flag_bias ? "true" : "false")
                  << ", relu: " << (flag_relu ? "true" : "false")
436
                  << ", threads: " << th << ", power_mode: " << cls
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
                  << " successed!!\n";
      }
    }
  }
  release_param(&param_int8_out);
  release_param(&param_fp32_out);
}
#else
void test_conv_int8(const std::vector<DDim>& input_dims,
                    const DDim& weight_dim,
                    int group,
                    const std::vector<int>& strides,
                    const std::vector<int>& pads,
                    const std::vector<int>& dilas,
                    bool flag_bias,
                    bool flag_relu,
                    const std::vector<int>& thread_num,
454
                    const std::vector<int>& power_mode) {}
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
#endif  // LITE_WITH_ARM

#if 1  /// 3x3dw
TEST(TestConv3x3DWInt8, test_conv3x3_depthwise) {
  if (FLAGS_basic_test) {
    for (auto& stride : {1, 2}) {
      for (auto& pad : {0, 1}) {
        for (auto& flag_bias : {false, true}) {
          for (auto& flag_relu : {false, true}) {
            for (auto& c : {1, 3, 5, 8, 16, 32}) {
              std::vector<DDim> dims;
              DDim weights_dim({c, 1, 3, 3});
              for (auto& batch : {1, 2}) {
                for (auto& h : {1, 3, 15, 19, 75, 32, 28}) {
                  dims.push_back(DDim({batch, c, h, h}));
                }
              }
              test_conv_int8(dims,
                             weights_dim,
                             c,
                             {stride, stride},
                             {pad, pad},
                             {1, 1},
                             flag_bias,
                             flag_relu,
                             {1, 2, 4},
481
                             {FLAGS_power_mode});
482 483 484 485 486 487 488 489 490
            }
          }
        }
      }
    }
  }
}
#endif  /// 3x3dw

Y
yiicy 已提交
491
#if 1  /// 5x5dw
492 493
TEST(TestConv5x5DWInt8, test_conv5x5_depthwise) {
  if (FLAGS_basic_test) {
Y
yiicy 已提交
494
    for (auto& stride : {1}) {
495 496 497 498 499 500 501
      for (auto& pad : {0, 1, 2}) {
        for (auto& flag_bias : {false, true}) {
          for (auto& flag_relu : {false, true}) {
            for (auto& c : {1, 3, 5, 8, 16, 32}) {
              std::vector<DDim> dims;
              DDim weights_dim({c, 1, 5, 5});
              for (auto& batch : {1, 2}) {
Y
yiicy 已提交
502
                for (auto& h : {1, 3, 15, 19, 28, 32, 75}) {
503 504 505 506 507 508 509 510 511 512 513 514
                  dims.push_back(DDim({batch, c, h, h}));
                }
              }
              test_conv_int8(dims,
                             weights_dim,
                             c,
                             {stride, stride},
                             {pad, pad},
                             {1, 1},
                             flag_bias,
                             flag_relu,
                             {1, 2, 4},
515
                             {FLAGS_power_mode});
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
            }
          }
        }
      }
    }
  }
}
#endif  /// 5x5dw

#if 1  /// conv1x1s1
TEST(TestConv1x1s1Int8, test_conv1x1s1) {
  if (FLAGS_basic_test) {
    for (auto& cin : {1, 3, 8, 11, 32}) {
      for (auto& cout : {1, 5, 16, 37}) {
        for (auto& g : {1, 2}) {
          for (auto& flag_bias : {false, true}) {
            for (auto& flag_relu : {false, true}) {
              std::vector<DDim> dims;
              if (cin % g != 0 || cout % g != 0) {
                continue;
              }
              DDim weights_dim({cout, cin / g, 1, 1});
              for (auto& batch : {1, 2}) {
                for (auto& h : {1, 7, 19, 28, 32, 56, 1}) {
                  dims.push_back(DDim({batch, cin, h, h}));
                }
              }
              test_conv_int8(dims,
                             weights_dim,
                             g,
                             {1, 1},
                             {0, 0},
                             {1, 1},
                             flag_bias,
                             flag_relu,
                             {1, 2, 4},
552
                             {FLAGS_power_mode});
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
            }
          }
        }
      }
    }
  }
}
#endif  /// conv1x1s1

#if 1  /// conv3x3s1
TEST(TestConv3x3s1Int8, test_conv_3x3s1) {
  if (FLAGS_basic_test) {
    for (auto& cin : {1, 3, 8, 32, 48}) {
      for (auto& cout : {1, 5, 8, 32, 48}) {
        for (auto& pad : {1, 2}) {
          for (auto& flag_bias : {false, true}) {
            for (auto& flag_relu : {false, true}) {
              std::vector<DDim> dims;
              DDim weights_dim({cout, cin, 3, 3});
              for (auto& batch : {1, 2}) {
                for (auto& h : {1, 7, 19, 56, 32}) {
                  dims.push_back(DDim({batch, cin, h, h}));
                }
              }
              test_conv_int8(dims,
                             weights_dim,
                             1,
                             {1, 1},
                             {pad, pad},
                             {1, 1},
                             flag_bias,
                             flag_relu,
                             {1, 2, 4},
586
                             {FLAGS_power_mode});
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
            }
          }
        }
      }
    }
  }
}
#endif  /// conv3x3s1

#if 1  /// conv3x3s2
TEST(TestConv3x3s2Int8, test_conv_3x3s2) {
  if (FLAGS_basic_test) {
    for (auto& cin : {1, 3, 8, 32}) {
      for (auto& cout : {1, 5, 8, 32}) {
        for (auto& pad : {1, 2}) {
          for (auto& flag_bias : {false, true}) {
            for (auto& flag_relu : {false, true}) {
              std::vector<DDim> dims;
              DDim weights_dim({cout, cin, 3, 3});
              for (auto& batch : {1, 2}) {
                for (auto& h : {1, 7, 19, 28, 75, 56, 32}) {
                  dims.push_back(DDim({batch, cin, h, h}));
                }
              }
              test_conv_int8(dims,
                             weights_dim,
                             1,
                             {2, 2},
                             {pad, pad},
                             {1, 1},
                             flag_bias,
                             flag_relu,
                             {1, 2, 4},
620
                             {FLAGS_power_mode});
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
            }
          }
        }
      }
    }
  }
}
#endif  /// conv3x3s2

#if 1  /// random param conv
TEST(TestConvRandInt8, test_conv_rand) {
  if (FLAGS_basic_test) {
    for (auto& cin : {1, 3, 8, 16}) {
      for (auto& cout : {1, 5, 8, 16}) {
        for (auto& g : {1, 2}) {
          for (auto& kw : {1, 2, 3}) {
            for (auto& kh : {1, 2, 3}) {
              for (auto& stride : {1, 2}) {
                for (auto& pad : {0, 1, 2}) {
                  for (auto& dila : {1, 2}) {
                    for (auto& flag_bias : {false, true}) {
                      for (auto& flag_relu : {false, true}) {
                        if (cin % g != 0 || cout % g != 0) {
                          continue;
                        }
                        std::vector<DDim> dims;
                        DDim weights_dim({cout, cin / g, kh, kw});
                        for (auto& batch : {1, 2}) {
                          for (auto& h : {1, 3, 19, 32, 28}) {
                            dims.push_back(DDim({batch, cin, h, h}));
                          }
                        }
                        test_conv_int8(dims,
                                       weights_dim,
                                       g,
                                       {stride, stride},
                                       {pad, pad},
                                       {dila, dila},
                                       flag_bias,
                                       flag_relu,
                                       {1, 2, 4},
662
                                       {FLAGS_power_mode});
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// random param conv

#if 1  /// custom
TEST(TestConvCustomInt8, test_conv_custom_size) {
  CHECK_EQ(FLAGS_in_channel % FLAGS_group, 0)
      << "input channel must be divided by group";
  CHECK_EQ(FLAGS_out_channel % FLAGS_group, 0)
      << "num_output must be divided by group";
  test_conv_int8(
      {DDim({FLAGS_batch, FLAGS_in_channel, FLAGS_in_height, FLAGS_in_width})},
      DDim({FLAGS_out_channel,
            FLAGS_in_channel / FLAGS_group,
            FLAGS_kernel_h,
            FLAGS_kernel_w}),
      FLAGS_group,
      {FLAGS_stride_h, FLAGS_stride_w},
      {FLAGS_pad_h, FLAGS_pad_w},
      {FLAGS_dila_h, FLAGS_dila_w},
      FLAGS_flag_bias,
      FLAGS_flag_relu,
      {FLAGS_threads},
696
      {FLAGS_power_mode});
697 698
}
#endif  // custom