conv_add_kernel.cpp 5.0 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADD_OP

#include "operators/kernel/conv_add_kernel.h"

namespace paddle_mobile {
namespace operators {

L
liuruilong 已提交
21
template <>
E
eclipsess 已提交
22
bool ConvAddKernel<CPU, float>::Init(FusionConvAddParam *param) {
L
liuruilong 已提交
23 24 25
  return true;
}

W
wangliu 已提交
26
void ConvAddBasic(const FusionConvAddParam &param) {
W
wangliu 已提交
27 28
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
W
wangliu 已提交
29 30
  Tensor bias = *param.Bias();
  int axis = param.Axis();
W
wangliu 已提交
31
  Tensor *output = param.Output();
L
liuruilong 已提交
32
  math::expand_bias(bias, axis, output->dims());
W
wangliu 已提交
33
  output->ShareDataWith(bias);
W
wangliu 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  int groups = param.Groups();
  std::vector<int> strides = param.Strides();
  std::vector<int> paddings = param.Paddings();
  std::vector<int> dilations = param.Dilations();

  const int batch_size = static_cast<int>(input->dims()[0]);

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));

  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
W
wangliu 已提交
54
      framework::flatten_to_2d(col_shape, data_dim + 1);
W
wangliu 已提交
55

L
liuruilong 已提交
56 57
  bool is_expand =
      math::IsExpand(filter_shape_vec, strides, paddings, dilations);
W
wangliu 已提交
58 59 60 61 62 63 64 65 66
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
    col.mutable_data<float>(col_shape);
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
W
wangliu 已提交
67
      input->dims(), 1, static_cast<int>(input->dims().size()));
W
wangliu 已提交
68 69 70 71 72

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
W
wangliu 已提交
73 74
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};
W
wangliu 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

  math::Vol2ColFunctor<CPU, float> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;

  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }
      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
      math::matmul<float>(filter_slice, false, col_matrix, false,
                          static_cast<float>(1), &out_slice,
W
wangliu 已提交
109
                          static_cast<float>(1));
W
wangliu 已提交
110 111 112
    }
  }
}
W
wangliu 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

template <>
void ConvAddKernel<CPU, float>::Compute(const FusionConvAddParam &param) const {
  if (param.Groups() == param.Input()->dims()[1] &&
      param.Input()->dims()[1] == param.Output()->dims()[1] &&
      param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
      param.Filter()->dims()[2] == 3 && param.Strides()[0] == 1) {
    math::DepthwiseConv3x3s1p1(param.Input(), param.Filter(), param.Output(),
                               param.Bias(), true);
  } else if (param.Groups() == param.Input()->dims()[1] &&
             param.Input()->dims()[1] == param.Output()->dims()[1] &&
             param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
             param.Filter()->dims()[2] == 3) {
    math::DepthwiseConv3x3(param.Input(), param.Strides(), param.Paddings(),
                           param.Filter(), param.Bias(), param.Output(), true);
  } else {
    ConvAddBasic(param);
  }
}

W
wangliu 已提交
133 134 135 136 137 138
template class ConvAddKernel<CPU, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif