conv_add_kernel.cpp 4.2 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADD_OP

#include "operators/kernel/conv_add_kernel.h"

namespace paddle_mobile {
namespace operators {

L
liuruilong 已提交
21 22 23 24 25
template <>
bool ConvAddKernel<CPU, float>::Init(const FusionConvAddParam &para) const {
  return true;
}

W
wangliu 已提交
26
template <>
L
liuruilong 已提交
27
void ConvAddKernel<CPU, float>::Compute(const FusionConvAddParam &param) const {
W
wangliu 已提交
28 29
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
W
wangliu 已提交
30 31
  Tensor bias = *param.Bias();
  int axis = param.Axis();
W
wangliu 已提交
32
  Tensor *output = param.Output();
L
liuruilong 已提交
33
  math::expand_bias(bias, axis, output->dims());
W
wangliu 已提交
34
  output->ShareDataWith(bias);
W
wangliu 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  int groups = param.Groups();
  std::vector<int> strides = param.Strides();
  std::vector<int> paddings = param.Paddings();
  std::vector<int> dilations = param.Dilations();

  const int batch_size = static_cast<int>(input->dims()[0]);

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));

  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
W
wangliu 已提交
55
      framework::flatten_to_2d(col_shape, data_dim + 1);
W
wangliu 已提交
56

L
liuruilong 已提交
57 58
  bool is_expand =
      math::IsExpand(filter_shape_vec, strides, paddings, dilations);
W
wangliu 已提交
59 60 61 62 63 64 65 66 67
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
    col.mutable_data<float>(col_shape);
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
W
wangliu 已提交
68
      input->dims(), 1, static_cast<int>(input->dims().size()));
W
wangliu 已提交
69 70 71 72 73

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
W
wangliu 已提交
74 75
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};
W
wangliu 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

  math::Vol2ColFunctor<CPU, float> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;

  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }

      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
      math::matmul<float>(filter_slice, false, col_matrix, false,
                          static_cast<float>(1), &out_slice,
W
wangliu 已提交
111
                          static_cast<float>(1));
W
wangliu 已提交
112 113 114 115 116 117 118 119 120
    }
  }
}
template class ConvAddKernel<CPU, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif