activation_compute.cc 8.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/activation_compute.h"
16
#include "lite/backends/arm/math/funcs.h"
Y
Yan Chunwei 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

void ReluCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_relu<float>(
      x_data, output_data, x_dims.production(), ctx.threads());
}

void LeakyReluCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto alpha = param.Leaky_relu_alpha;
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_relu_neg<float>(
      x_data, output_data, x_dims.production(), alpha, ctx.threads());
}

void ReluClippedCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto coef = param.Relu_clipped_coef;
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_clipped_relu<float>(
      x_data, output_data, x_dims.production(), coef, ctx.threads());
}

void PReluCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto mode = param.Prelu_mode;
  auto alpha_data = param.Prelu_alpha->data<float>();
  auto output_data = param.Out->mutable_data<float>();

  int outer_size = x_dims[0];
  int channel_size = x_dims[1];
  int inner_size = x_dims.count(2, x_dims.size());

  lite::arm::math::act_prelu<float>(x_data,
                                    output_data,
                                    outer_size,
                                    channel_size,
                                    inner_size,
                                    mode,
                                    alpha_data,
                                    ctx.threads());
}

void SigmoidCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_sigmoid<float>(
      x_data, output_data, x_dims.production(), ctx.threads());
}

void TanhCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_tanh<float>(
      x_data, output_data, x_dims.production(), ctx.threads());
}

void SwishCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto beta = param.Swish_beta;
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_swish<float>(
      x_data, output_data, x_dims.production(), beta, ctx.threads());
}

void Relu6Compute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  float coef = 6.;
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_clipped_relu<float>(
      x_data, output_data, x_dims.production(), coef, ctx.threads());
}

void LogCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_log<float>(
      x_data, output_data, x_dims.production(), ctx.threads());
}

Y
Yan Chunwei 已提交
130 131 132 133 134 135 136 137 138 139
void ExpCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_exp<float>(
      x_data, output_data, x_dims.production(), ctx.threads());
}

140 141 142 143 144 145 146 147 148 149
void FloorCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_floor<float>(
      x_data, output_data, x_dims.production(), ctx.threads());
}

Y
Yan Chunwei 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(
    relu, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::ReluCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(leaky_relu,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::LeakyReluCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("alpha", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(relu_clipped,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ReluClippedCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Relu_clipped_coef", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(
    prelu, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::PReluCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("mode", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Alpha", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(sigmoid,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::SigmoidCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(
    tanh, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::TanhCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(
    swish, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::SwishCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("beta", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(
Y
Yan Chunwei 已提交
208
    relu6, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::Relu6Compute, def)
Y
Yan Chunwei 已提交
209 210 211 212 213 214 215 216
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(
    log, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::LogCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
Y
Yan Chunwei 已提交
217 218 219 220 221
REGISTER_LITE_KERNEL(
    exp, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::ExpCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
222 223 224 225 226
REGISTER_LITE_KERNEL(
    floor, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::FloorCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();