activation_compute.cc 7.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/activation_compute.h"
#include "lite/arm/math/funcs.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

void ReluCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_relu<float>(
      x_data, output_data, x_dims.production(), ctx.threads());
}

void LeakyReluCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto alpha = param.Leaky_relu_alpha;
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_relu_neg<float>(
      x_data, output_data, x_dims.production(), alpha, ctx.threads());
}

void ReluClippedCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto coef = param.Relu_clipped_coef;
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_clipped_relu<float>(
      x_data, output_data, x_dims.production(), coef, ctx.threads());
}

void PReluCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto mode = param.Prelu_mode;
  auto alpha_data = param.Prelu_alpha->data<float>();
  auto output_data = param.Out->mutable_data<float>();

  int outer_size = x_dims[0];
  int channel_size = x_dims[1];
  int inner_size = x_dims.count(2, x_dims.size());

  lite::arm::math::act_prelu<float>(x_data,
                                    output_data,
                                    outer_size,
                                    channel_size,
                                    inner_size,
                                    mode,
                                    alpha_data,
                                    ctx.threads());
}

void SigmoidCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_sigmoid<float>(
      x_data, output_data, x_dims.production(), ctx.threads());
}

void TanhCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_tanh<float>(
      x_data, output_data, x_dims.production(), ctx.threads());
}

void SwishCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto beta = param.Swish_beta;
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_swish<float>(
      x_data, output_data, x_dims.production(), beta, ctx.threads());
}

void Relu6Compute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  float coef = 6.;
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_clipped_relu<float>(
      x_data, output_data, x_dims.production(), coef, ctx.threads());
}

void LogCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto x_dims = param.X->dims();
  auto x_data = param.X->data<float>();
  auto output_data = param.Out->mutable_data<float>();
  lite::arm::math::act_log<float>(
      x_data, output_data, x_dims.production(), ctx.threads());
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(
    relu, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::ReluCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(leaky_relu,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::LeakyReluCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("alpha", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(relu_clipped,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ReluClippedCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Relu_clipped_coef", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(
    prelu, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::PReluCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("mode", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Alpha", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(sigmoid,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::SigmoidCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(
    tanh, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::TanhCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(
    swish, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::SwishCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("beta", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(
    relu6, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::ReluCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
REGISTER_LITE_KERNEL(
    log, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::LogCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();