depthwise_conv2d_compute.cc 22.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
16

17
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
18 19
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
20
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class DepthwiseConv2dCompute
    : public KernelLite<TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
 public:
  using param_t = operators::ConvParam;

34 35 36 37
  std::string doc() const override {
    return "DepthwiseConv2d using cl::Buffer, kFloat";
  }

Y
Yan Chunwei 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
  void PrepareForRun() override {
    const auto& param = *param_.get_mutable<param_t>();
    if (param.fuse_relu) {
      build_options_ += " -DRELU";
    }
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "buffer/depthwise_conv2d_kernel.cl", build_options_);
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    auto x_dims = param.x->dims();
    auto filter_dims = param.filter->dims();
    auto output_dims = param.output->dims();
H
HappyAngel 已提交
53
    auto paddings = *param.paddings;
Y
Yan Chunwei 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    auto strides = param.strides;

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    auto* input_buf = param.x->data<float, cl::Buffer>();
    auto* filter_buf = param.filter->data<float, cl::Buffer>();
    auto* bias_buf = param.bias == nullptr
                         ? static_cast<cl::Buffer*>(nullptr)
                         : param.bias->data<float, cl::Buffer>();
    auto* output_buf =
        param.output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    cl_int status;
    auto numel = output_dims.production();
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, static_cast<const int>(numel));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *input_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(filter_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(filter_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *output_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *filter_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *bias_buf);
    CL_CHECK_FATAL(status);
    auto global_work_size = cl::NDRange(static_cast<size_t>(numel));
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(output_buf, event_);
  }

 private:
118
  std::string kernel_func_name_{"depthwise_conv2d"};
Y
Yan Chunwei 已提交
119 120 121 122
  std::string build_options_{"-DCL_DTYPE=float"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

123
class DepthwiseConv2dComputeFP16Image
124 125 126
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
127 128 129
 public:
  using param_t = operators::ConvParam;

130 131 132 133
  std::string doc() const override {
    return "DepthwiseConv2d using cl::Image2D/kImageDefault, kFP16";
  }

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  void PrepareForRun() override {
    const auto& param = *param_.get_mutable<param_t>();
    if (param.fuse_relu) {
      build_options_ += " -DRELU";
    }
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/depthwise_conv2d_kernel.cl", build_options_);
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    auto x_dims = param.x->dims();
    auto filter_dims = param.filter->dims();
    auto output_dims = param.output->dims();
    auto paddings = *param.paddings;
    auto strides = param.strides;
    auto dilations = *param.dilations;
    int offset = filter_dims[2] / 2 - paddings[0];
    int input_c_block = (x_dims[1] + 3) / 4;

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
157 158
    auto* input_img = param.x->data<int16_t, cl::Image2D>();
    auto* filter_img = param.filter->data<int16_t, cl::Image2D>();
159 160 161

    auto* bias_img = param.bias == nullptr
                         ? static_cast<cl::Image2D*>(nullptr)
162
                         : param.bias->data<int16_t, cl::Image2D>();
163 164 165

    auto image_shape = InitImageDimInfoWith(output_dims);

166
    auto* output_img = param.output->mutable_data<int16_t, cl::Image2D>(
167 168 169 170 171 172 173 174 175 176 177
        image_shape["width"], image_shape["height"]);

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int c_block = (output_dims[1] + 3) / 4;
    int w = output_dims[3];
    int nh = output_dims[0] * output_dims[2];
    auto global_work_size = cl::NDRange(c_block, w, nh);

178 179 180 181
    VLOG(4) << "setArg";
    VLOG(4) << "c_block = " << c_block;
    VLOG(4) << "w = " << w;
    VLOG(4) << "nh = " << nh;
182

183 184 185 186 187 188 189 190
    VLOG(4) << "strides = " << strides[0];
    VLOG(4) << "offset = " << offset;
    VLOG(4) << "dilations = " << dilations[0];
    VLOG(4) << "input_c_block = " << input_c_block;
    VLOG(4) << "x_dims[3] = " << x_dims[3];
    VLOG(4) << "x_dims[2] = " << x_dims[2];
    VLOG(4) << "output_dims[3] = " << output_dims[3];
    VLOG(4) << "output_dims[2] = " << output_dims[2];
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

    cl_int status;
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, static_cast<const int>(c_block));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(w));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(nh));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *input_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *filter_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *output_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(offset));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(dilations[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(input_c_block));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
    CL_CHECK_FATAL(status);

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(output_img, event_);
  }

 private:
235 236
  std::string kernel_func_name_{"depth_conv2d_3x3"};
  std::string build_options_{"-DCL_DTYPE_half"};
237 238 239 240
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

class DepthwiseConv2d3x3s1ComputeFP16Image
241 242 243
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
244 245 246
 public:
  using param_t = operators::ConvParam;

247 248 249 250
  std::string doc() const override {
    return "DepthwiseConv2d3x3s1 using cl::Image2D/kImageDefault, kFP16";
  }

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
  void PrepareForRun() override {
    const auto& param = *param_.get_mutable<param_t>();
    if (param.fuse_relu) {
      build_options_ += " -DRELU";
    }
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/depthwise_conv2d_kernel.cl", build_options_);
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    auto x_dims = param.x->dims();
    auto filter_dims = param.filter->dims();
    auto output_dims = param.output->dims();
    auto paddings = *param.paddings;
    auto strides = param.strides;
    auto dilations = *param.dilations;

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
272 273
    auto* input_img = param.x->data<int16_t, cl::Image2D>();
    auto* filter_img = param.filter->data<int16_t, cl::Image2D>();
274 275 276

    auto* bias_img = param.bias == nullptr
                         ? static_cast<cl::Image2D*>(nullptr)
277
                         : param.bias->data<int16_t, cl::Image2D>();
278 279 280

    auto image_shape = InitImageDimInfoWith(output_dims);

281
    auto* output_img = param.output->mutable_data<int16_t, cl::Image2D>(
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        image_shape["width"], image_shape["height"]);

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int c_block = (output_dims[1] + 3) / 4;
    int w = output_dims[3];
    int nh = output_dims[0] * output_dims[2];

    int w_blk_size = 2;
    int w_blk = (w + w_blk_size - 1) / w_blk_size;

    auto global_work_size = cl::NDRange(c_block, w_blk, nh);

    cl_int status;
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, static_cast<const int>(c_block));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(w_blk));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(nh));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *input_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *filter_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *output_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(dilations[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
    CL_CHECK_FATAL(status);

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(output_img, event_);
  }

 private:
340 341
  std::string kernel_func_name_{"depth_conv2d_3x3s1"};
  std::string build_options_{"-DCL_DTYPE_half"};
342 343 344
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
class DepthwiseConv2dBasicComputeFP32Image
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFloat),
                        DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::ConvParam;

  std::string doc() const override {
    return "DepthwiseConv2d basic using cl::Image2D/kImageDefault, kFloat32";
  }

  void PrepareForRun() override {
    const auto& param = *param_.get_mutable<param_t>();
    const bool has_bias = param.bias != nullptr;
    const bool is_element_wise_bias =
        has_bias && param.output->dims() == param.bias->dims();
    if (param.fuse_relu) {
      build_options_ += " -DRELU";
    }
    if (has_bias) {
      build_options_ += is_element_wise_bias ? " -DBIASE_ELE" : " -DBIASE_CH";
    }
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "image/depthwise_conv2d_basic_kernel.cl",
                                    build_options_);
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    auto input_dims = param.x->dims();
    auto paddings = *param.paddings;
    auto strides = param.strides;
    auto* input_image = param.x->data<float, cl::Image2D>();
    auto* filter_image = param.filter->data<float, cl::Image2D>();
    auto filter_dims = param.filter->dims();
    auto output_dims = param.output->dims();

    int input_width = input_dims[3];
    int input_height = input_dims[2];
    int output_width = output_dims[3];
    int output_height = output_dims[2];
    int filter_width = filter_dims[3];
    int filter_height = filter_dims[2];
    auto out_image_shape = InitImageDimInfoWith(output_dims);
    auto* out_image = param.output->mutable_data<float, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);

    const bool has_bias = param.bias != nullptr;
    const bool is_element_wise_bias =
        has_bias && param.output->dims() == param.bias->dims();
    int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
                 static_cast<int>(paddings[0]);

    // calc input_c_block
    auto input_image_shape = InitImageDimInfoWith(input_dims);
    int input_c_block = input_image_shape["width"] / input_dims[3];
    int input_c = input_dims[1];
    auto dilations = *param.dilations;

    const std::vector<size_t>& default_work_size =
        DefaultWorkSize(output_dims,
                        DDim(std::vector<DDim::value_type>{
                            static_cast<int64_t>(out_image_shape["width"]),
                            static_cast<int64_t>(out_image_shape["height"])}));

    int c_block = default_work_size[0];
    int w = default_work_size[1];
    int nh = default_work_size[2];

    VLOG(4) << "============ depthwise conv2d params ============";
    VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
            << input_image_shape["height"];
    VLOG(4) << "input_c_block: " << input_c_block;
    VLOG(4) << "input_c: " << input_c;
    VLOG(4) << "input_image: " << input_image;
    VLOG(4) << "filter_dims: " << filter_dims;
    VLOG(4) << "filter_image: " << filter_image;
    VLOG(4) << "output_dims: " << output_dims;
    VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
            << out_image_shape["height"];
    VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
    VLOG(4) << "has bias: " << has_bias;
    VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
    VLOG(4) << "strides: " << strides[0] << "," << strides[1];
    VLOG(4) << "offset: " << offset;
    VLOG(4) << "dilations.size : " << dilations.size();
    VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
    VLOG(4) << "default work size{c_block, w, nh}: "
            << "{" << c_block << ", " << w << ", " << nh << ""
            << "}";

    CHECK_GE(dilations.size(), 2);
    CHECK(dilations[0] == dilations[1]);
    CHECK_GE(input_dims.size(), 4);
    CHECK_GE(paddings.size(), 2);
    CHECK(paddings[0] == paddings[1]);
    CHECK_GE(strides.size(), 2);
    CHECK(strides[0] == strides[1]);

    // handle bias  use buffer for channel wise , use image for element wise
    const cl::Buffer* bias_buf = nullptr;
    const cl::Image2D* bias_image = nullptr;
    if (has_bias) {
      bias_image = param.bias->data<float, cl::Image2D>();
    }

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());
    VLOG(4) << "kernel_key: " << kernel_key.str();
    VLOG(4) << "kernel ready ... " << kernel_key.str();
    VLOG(4) << "w: " << w;

    cl_int status;
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, c_block);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, nh);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *input_image);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *filter_image);
    CL_CHECK_FATAL(status);
    if (has_bias) {
      VLOG(4) << "set bias_image: ";
      status = kernel.setArg(++arg_idx, *bias_image);
      CL_CHECK_FATAL(status);
    }
    status = kernel.setArg(++arg_idx, *out_image);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, strides[0]);
    CL_CHECK_FATAL(status);

    status = kernel.setArg(++arg_idx, offset);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, input_c_block);
    CL_CHECK_FATAL(status);

    status = kernel.setArg(++arg_idx, dilations[0]);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, input_width);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, input_height);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, output_width);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, output_height);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, filter_width);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, filter_height);
    CL_CHECK_FATAL(status);

    auto global_work_size =
        cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                    static_cast<size_t>(default_work_size.data()[1]),
                    static_cast<size_t>(default_work_size.data()[2])};

    VLOG(4) << "out_image: " << out_image;
    VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
            << global_work_size[1] << "," << global_work_size[2] << "}";

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_image, event_);
  }

 private:
  std::string kernel_func_name_{"depth_conv2d"};
  std::string build_options_{"-DCL_DTYPE_float"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};
Y
Yan Chunwei 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(depthwise_conv2d,
                     kOpenCL,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::opencl::DepthwiseConv2dCompute,
                     def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .Finalize();
544 545 546 547

REGISTER_LITE_KERNEL(
    depthwise_conv2d,
    kOpenCL,
548 549
    kFP16,
    kImageDefault,
550 551 552 553
    paddle::lite::kernels::opencl::DepthwiseConv2dComputeFP16Image,
    image2d)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
554 555
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
556 557
    .BindInput("Bias",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
558 559
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
560 561
    .BindInput("Filter",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
562 563
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageNW))})
564 565
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
566 567
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
568
    .Finalize();
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
REGISTER_LITE_KERNEL(
    depthwise_conv2d_basic,
    kOpenCL,
    kFloat,
    kImageDefault,
    paddle::lite::kernels::opencl::DepthwiseConv2dBasicComputeFP32Image,
    image2d)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Bias",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Filter",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kImageNW))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();