depthwise_conv2d_compute.cc 14.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
16
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
17 18
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
19
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class DepthwiseConv2dCompute
    : public KernelLite<TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
 public:
  using param_t = operators::ConvParam;

33 34 35 36
  std::string doc() const override {
    return "DepthwiseConv2d using cl::Buffer, kFloat";
  }

Y
Yan Chunwei 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
  void PrepareForRun() override {
    const auto& param = *param_.get_mutable<param_t>();
    if (param.fuse_relu) {
      build_options_ += " -DRELU";
    }
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "buffer/depthwise_conv2d_kernel.cl", build_options_);
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    auto x_dims = param.x->dims();
    auto filter_dims = param.filter->dims();
    auto output_dims = param.output->dims();
H
HappyAngel 已提交
52
    auto paddings = *param.paddings;
Y
Yan Chunwei 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    auto strides = param.strides;

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    auto* input_buf = param.x->data<float, cl::Buffer>();
    auto* filter_buf = param.filter->data<float, cl::Buffer>();
    auto* bias_buf = param.bias == nullptr
                         ? static_cast<cl::Buffer*>(nullptr)
                         : param.bias->data<float, cl::Buffer>();
    auto* output_buf =
        param.output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    cl_int status;
    auto numel = output_dims.production();
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, static_cast<const int>(numel));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *input_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(filter_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(filter_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *output_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *filter_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *bias_buf);
    CL_CHECK_FATAL(status);
    auto global_work_size = cl::NDRange(static_cast<size_t>(numel));
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(output_buf, event_);
  }

 private:
117
  std::string kernel_func_name_{"depthwise_conv2d_3x3"};
Y
Yan Chunwei 已提交
118 119 120 121
  std::string build_options_{"-DCL_DTYPE=float"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

122
class DepthwiseConv2dComputeFP16Image
123 124 125
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
126 127 128
 public:
  using param_t = operators::ConvParam;

129 130 131 132
  std::string doc() const override {
    return "DepthwiseConv2d using cl::Image2D/kImageDefault, kFP16";
  }

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  void PrepareForRun() override {
    const auto& param = *param_.get_mutable<param_t>();
    if (param.fuse_relu) {
      build_options_ += " -DRELU";
    }
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/depthwise_conv2d_kernel.cl", build_options_);
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    auto x_dims = param.x->dims();
    auto filter_dims = param.filter->dims();
    auto output_dims = param.output->dims();
    auto paddings = *param.paddings;
    auto strides = param.strides;
    auto dilations = *param.dilations;
    int offset = filter_dims[2] / 2 - paddings[0];
    int input_c_block = (x_dims[1] + 3) / 4;

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
156 157
    auto* input_img = param.x->data<int16_t, cl::Image2D>();
    auto* filter_img = param.filter->data<int16_t, cl::Image2D>();
158 159 160

    auto* bias_img = param.bias == nullptr
                         ? static_cast<cl::Image2D*>(nullptr)
161
                         : param.bias->data<int16_t, cl::Image2D>();
162 163 164

    auto image_shape = InitImageDimInfoWith(output_dims);

165
    auto* output_img = param.output->mutable_data<int16_t, cl::Image2D>(
166 167 168 169 170 171 172 173 174 175 176
        image_shape["width"], image_shape["height"]);

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int c_block = (output_dims[1] + 3) / 4;
    int w = output_dims[3];
    int nh = output_dims[0] * output_dims[2];
    auto global_work_size = cl::NDRange(c_block, w, nh);

177 178 179 180
    VLOG(4) << "setArg";
    VLOG(4) << "c_block = " << c_block;
    VLOG(4) << "w = " << w;
    VLOG(4) << "nh = " << nh;
181

182 183 184 185 186 187 188 189
    VLOG(4) << "strides = " << strides[0];
    VLOG(4) << "offset = " << offset;
    VLOG(4) << "dilations = " << dilations[0];
    VLOG(4) << "input_c_block = " << input_c_block;
    VLOG(4) << "x_dims[3] = " << x_dims[3];
    VLOG(4) << "x_dims[2] = " << x_dims[2];
    VLOG(4) << "output_dims[3] = " << output_dims[3];
    VLOG(4) << "output_dims[2] = " << output_dims[2];
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

    cl_int status;
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, static_cast<const int>(c_block));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(w));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(nh));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *input_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *filter_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *output_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(offset));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(dilations[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(input_c_block));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
    CL_CHECK_FATAL(status);

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(output_img, event_);
  }

 private:
234 235
  std::string kernel_func_name_{"depth_conv2d_3x3"};
  std::string build_options_{"-DCL_DTYPE_half"};
236 237 238 239
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

class DepthwiseConv2d3x3s1ComputeFP16Image
240 241 242
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
243 244 245
 public:
  using param_t = operators::ConvParam;

246 247 248 249
  std::string doc() const override {
    return "DepthwiseConv2d3x3s1 using cl::Image2D/kImageDefault, kFP16";
  }

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
  void PrepareForRun() override {
    const auto& param = *param_.get_mutable<param_t>();
    if (param.fuse_relu) {
      build_options_ += " -DRELU";
    }
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/depthwise_conv2d_kernel.cl", build_options_);
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    auto x_dims = param.x->dims();
    auto filter_dims = param.filter->dims();
    auto output_dims = param.output->dims();
    auto paddings = *param.paddings;
    auto strides = param.strides;
    auto dilations = *param.dilations;

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
271 272
    auto* input_img = param.x->data<int16_t, cl::Image2D>();
    auto* filter_img = param.filter->data<int16_t, cl::Image2D>();
273 274 275

    auto* bias_img = param.bias == nullptr
                         ? static_cast<cl::Image2D*>(nullptr)
276
                         : param.bias->data<int16_t, cl::Image2D>();
277 278 279

    auto image_shape = InitImageDimInfoWith(output_dims);

280
    auto* output_img = param.output->mutable_data<int16_t, cl::Image2D>(
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
        image_shape["width"], image_shape["height"]);

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int c_block = (output_dims[1] + 3) / 4;
    int w = output_dims[3];
    int nh = output_dims[0] * output_dims[2];

    int w_blk_size = 2;
    int w_blk = (w + w_blk_size - 1) / w_blk_size;

    auto global_work_size = cl::NDRange(c_block, w_blk, nh);

    cl_int status;
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, static_cast<const int>(c_block));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(w_blk));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(nh));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *input_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *filter_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *output_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(dilations[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
    CL_CHECK_FATAL(status);

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(output_img, event_);
  }

 private:
339 340
  std::string kernel_func_name_{"depth_conv2d_3x3s1"};
  std::string build_options_{"-DCL_DTYPE_half"};
341 342 343
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

Y
Yan Chunwei 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(depthwise_conv2d,
                     kOpenCL,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::opencl::DepthwiseConv2dCompute,
                     def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .Finalize();
360 361 362 363

REGISTER_LITE_KERNEL(
    depthwise_conv2d,
    kOpenCL,
364 365
    kFP16,
    kImageDefault,
366 367 368 369
    paddle::lite::kernels::opencl::DepthwiseConv2dComputeFP16Image,
    image2d)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
370 371
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
372 373
    .BindInput("Bias",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
374 375
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
376 377
    .BindInput("Filter",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
378 379
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageNW))})
380 381
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
382 383
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
384
    .Finalize();