pool_image_compute.cc 7.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
16

17
#include "lite/backends/opencl/cl_half.h"
18
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
19 20
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
21
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
#include "lite/utils/string.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

31
class PoolComputeImage2D : public KernelLite<TARGET(kOpenCL),
32
                                             PRECISION(kFP16),
33
                                             DATALAYOUT(kImageDefault)> {
34 35 36
 public:
  using param_t = operators::PoolParam;

37
  std::string doc() const override { return "Pool using cl::Image2D, kFP16"; }
38

39 40
  void PrepareForRun() override {
    const auto& param = *param_.get_mutable<param_t>();
41

42
    kernel_func_name_ += param.pooling_type;
43 44 45 46
    const bool global_pooling = param.global_pooling;
    if (global_pooling) {
      kernel_func_name_ += "_global";
    }
47
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
48
    auto& context = ctx_->As<OpenCLContext>();
49
    kernel_ = context.cl_context()->CreateKernel(
50
        kernel_func_name_, "image/pool_kernel.cl", build_options_, time_stamp_);
51 52 53 54 55 56 57 58 59 60 61
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    const auto& in_dims = param.x->dims();
    const auto& out_dims = param.output->dims();
    const std::string pooling_type = param.pooling_type;
    const bool global_pooling = param.global_pooling;
    std::vector<int> paddings = *param.paddings;
    std::vector<int> strides = param.strides;
    std::vector<int> ksize = param.ksize;
62 63

#ifndef LITE_SHUTDOWN_LOG
64 65 66 67
    VLOG(4) << "global_pooling: " << global_pooling;
    VLOG(4) << "pooling_type: " << pooling_type;
    VLOG(4) << "paddings : " << paddings[0] << "  " << paddings[1] << "  "
            << paddings[2] << "  " << paddings[3] << "  ";
68 69
#endif

70 71 72 73 74 75 76
    if (global_pooling) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[2 * i] = 0;
        paddings[2 * i + 1] = 0;
        ksize[i] = static_cast<int>(in_dims[i + 2]);
      }
    }
77 78

#ifndef LITE_SHUTDOWN_LOG
79 80 81 82 83 84 85 86 87 88 89 90
    VLOG(4) << "in_dims : [" << in_dims.size() << "]" << in_dims[0] << "  "
            << in_dims[1] << "  " << in_dims[2] << "  " << in_dims[3];
    VLOG(4) << "out_dims : [" << out_dims.size() << "]" << out_dims[0] << "  "
            << out_dims[1] << "  " << out_dims[2] << "  " << out_dims[3];
    VLOG(4) << "paddings fixed : " << paddings[0] << "  " << paddings[1] << "  "
            << paddings[2] << "  " << paddings[3] << "  ";
    VLOG(4) << "strides : [" << strides.size() << "]" << strides[0] << "  "
            << strides[1];
    VLOG(4) << "ksize : [" << ksize.size() << "]" << ksize[0] << "  "
            << ksize[1] << "  " << ksize[2] << "  " << ksize[3];
    VLOG(4) << "paddings : [" << paddings.size() << "]" << paddings[0] << "  "
            << paddings[1] << "  " << paddings[2] << "  " << paddings[3];
91 92
#endif

93 94 95 96 97 98 99 100 101
    bool pads_equal =
        (paddings[0] == paddings[1]) && (paddings[2] == paddings[3]);
    if (!pads_equal) {
      LOG(FATAL)
          << "padding requires pad_left == pad_right, pad_top == pad_bottom";
    }
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

102
    auto* x_img = param.x->data<half_t, cl::Image2D>();
103
    //    VLOG(4) << "x_image" << x_img;
104 105

    auto out_image_shape = InitImageDimInfoWith(out_dims);
106
#ifndef LITE_SHUTDOWN_LOG
107 108
    VLOG(4) << "out_image_shape = " << out_image_shape["width"] << " "
            << out_image_shape["height"];
109
#endif
110
    auto* out_img = param.output->mutable_data<half_t, cl::Image2D>(
111
        out_image_shape["width"], out_image_shape["height"]);
112
    //    VLOG(4) << "out_image" << out_img;
113 114 115 116 117

    int c_block = (out_dims[1] + 3) / 4;
    int w = out_dims[3];
    int nh = out_dims[0] * out_dims[2];
    auto global_work_size = cl::NDRange(c_block, w, nh);
118
#ifndef LITE_SHUTDOWN_LOG
119 120
    VLOG(4) << "global_work_size : [" << 3 << "]" << c_block << "  " << w
            << "  " << nh << "  ";
121
#endif
122
    cl_int status;
123
    status = kernel_->setArg(0, *x_img);
124
    CL_CHECK_FATAL(status);
125
    status = kernel_->setArg(1, *out_img);
126
    CL_CHECK_FATAL(status);
127
    status = kernel_->setArg(2, static_cast<const int>(in_dims[2]));
128
    CL_CHECK_FATAL(status);
129
    status = kernel_->setArg(3, static_cast<const int>(in_dims[3]));
130
    CL_CHECK_FATAL(status);
131
    status = kernel_->setArg(4, static_cast<const int>(out_dims[2]));
132
    CL_CHECK_FATAL(status);
133
    status = kernel_->setArg(5, static_cast<const int>(out_dims[3]));
134
    CL_CHECK_FATAL(status);
135
    status = kernel_->setArg(6, static_cast<const int>(ksize[0]));
136
    CL_CHECK_FATAL(status);
137
    status = kernel_->setArg(7, static_cast<const int>(ksize[1]));
138
    CL_CHECK_FATAL(status);
139
    status = kernel_->setArg(8, static_cast<const int>(strides[0]));
140
    CL_CHECK_FATAL(status);
141
    status = kernel_->setArg(9, static_cast<const int>(strides[1]));
142
    CL_CHECK_FATAL(status);
143
    status = kernel_->setArg(10, static_cast<const int>(paddings[2]));
144
    CL_CHECK_FATAL(status);
145
    status = kernel_->setArg(11, static_cast<const int>(paddings[0]));
146 147 148
    CL_CHECK_FATAL(status);

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
149
        *(kernel_.get()),
150 151 152 153 154 155 156 157 158 159
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
  }

 private:
160
  std::shared_ptr<cl::Kernel> kernel_;
161
  std::string kernel_func_name_{"pool_"};
162
  std::string build_options_{"-DCL_DTYPE_half"};
163
  std::string time_stamp_{GetTimeStamp()};
164 165 166
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

Y
Yan Chunwei 已提交
167 168 169 170 171
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

172 173
REGISTER_LITE_KERNEL(pool2d,
                     kOpenCL,
174
                     kFP16,
175
                     kImageDefault,
176 177 178 179
                     paddle::lite::kernels::opencl::PoolComputeImage2D,
                     image2d)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
180
                                      PRECISION(kFP16),
181
                                      DATALAYOUT(kImageDefault))})
182 183
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
184
                                       PRECISION(kFP16),
185
                                       DATALAYOUT(kImageDefault))})
186
    .Finalize();