pool_image_compute.cc 6.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
16

17
#include "lite/backends/opencl/cl_half.h"
18
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
19 20
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
21
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
#include "lite/utils/string.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

31
class PoolComputeImage2D : public KernelLite<TARGET(kOpenCL),
32
                                             PRECISION(kFP16),
33
                                             DATALAYOUT(kImageDefault)> {
34 35 36
 public:
  using param_t = operators::PoolParam;

37
  std::string doc() const override { return "Pool using cl::Image2D, kFP16"; }
38

39 40
  void PrepareForRun() override {
    const auto& param = *param_.get_mutable<param_t>();
41

42
    kernel_func_name_ += param.pooling_type;
43 44 45 46
    const bool global_pooling = param.global_pooling;
    if (global_pooling) {
      kernel_func_name_ += "_global";
    }
47 48 49 50 51 52 53 54 55 56 57 58 59 60
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/pool_kernel.cl", build_options_);
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    const auto& in_dims = param.x->dims();
    const auto& out_dims = param.output->dims();
    const std::string pooling_type = param.pooling_type;
    const bool global_pooling = param.global_pooling;
    std::vector<int> paddings = *param.paddings;
    std::vector<int> strides = param.strides;
    std::vector<int> ksize = param.ksize;
61 62 63 64
    VLOG(4) << "global_pooling: " << global_pooling;
    VLOG(4) << "pooling_type: " << pooling_type;
    VLOG(4) << "paddings : " << paddings[0] << "  " << paddings[1] << "  "
            << paddings[2] << "  " << paddings[3] << "  ";
65 66 67 68 69 70 71
    if (global_pooling) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[2 * i] = 0;
        paddings[2 * i + 1] = 0;
        ksize[i] = static_cast<int>(in_dims[i + 2]);
      }
    }
72 73 74 75 76 77 78 79 80 81 82 83
    VLOG(4) << "in_dims : [" << in_dims.size() << "]" << in_dims[0] << "  "
            << in_dims[1] << "  " << in_dims[2] << "  " << in_dims[3];
    VLOG(4) << "out_dims : [" << out_dims.size() << "]" << out_dims[0] << "  "
            << out_dims[1] << "  " << out_dims[2] << "  " << out_dims[3];
    VLOG(4) << "paddings fixed : " << paddings[0] << "  " << paddings[1] << "  "
            << paddings[2] << "  " << paddings[3] << "  ";
    VLOG(4) << "strides : [" << strides.size() << "]" << strides[0] << "  "
            << strides[1];
    VLOG(4) << "ksize : [" << ksize.size() << "]" << ksize[0] << "  "
            << ksize[1] << "  " << ksize[2] << "  " << ksize[3];
    VLOG(4) << "paddings : [" << paddings.size() << "]" << paddings[0] << "  "
            << paddings[1] << "  " << paddings[2] << "  " << paddings[3];
84 85 86 87 88 89 90 91 92
    bool pads_equal =
        (paddings[0] == paddings[1]) && (paddings[2] == paddings[3]);
    if (!pads_equal) {
      LOG(FATAL)
          << "padding requires pad_left == pad_right, pad_top == pad_bottom";
    }
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

93
    auto* x_img = param.x->data<half_t, cl::Image2D>();
94
    //    VLOG(4) << "x_image" << x_img;
95 96

    auto out_image_shape = InitImageDimInfoWith(out_dims);
97 98
    VLOG(4) << "out_image_shape = " << out_image_shape["width"] << " "
            << out_image_shape["height"];
99
    auto* out_img = param.output->mutable_data<half_t, cl::Image2D>(
100
        out_image_shape["width"], out_image_shape["height"]);
101
    //    VLOG(4) << "out_image" << out_img;
102 103 104 105 106 107 108 109 110

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int c_block = (out_dims[1] + 3) / 4;
    int w = out_dims[3];
    int nh = out_dims[0] * out_dims[2];
    auto global_work_size = cl::NDRange(c_block, w, nh);
111 112
    VLOG(4) << "global_work_size : [" << 3 << "]" << c_block << "  " << w
            << "  " << nh << "  ";
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    cl_int status;
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(ksize[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(ksize[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[0]));
    CL_CHECK_FATAL(status);

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
  }

 private:
  std::string kernel_func_name_{"pool_"};
153
  std::string build_options_{"-DCL_DTYPE_half"};
154 155 156
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

Y
Yan Chunwei 已提交
157 158 159 160 161
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

162 163
REGISTER_LITE_KERNEL(pool2d,
                     kOpenCL,
164
                     kFP16,
165
                     kImageDefault,
166 167 168 169
                     paddle::lite::kernels::opencl::PoolComputeImage2D,
                     image2d)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
170
                                      PRECISION(kFP16),
171
                                      DATALAYOUT(kImageDefault))})
172 173
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
174
                                       PRECISION(kFP16),
175
                                       DATALAYOUT(kImageDefault))})
176
    .Finalize();