executor.cpp 21.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <utility>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
25 26 27 28
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
Z
zhangyang 已提交
29
#include "memory/t_malloc.h"
L
update  
liuruilong 已提交
30 31 32 33

#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
34 35

namespace paddle_mobile {
36
namespace framework {
37

W
wangliu 已提交
38 39
#pragma mark - executor

40 41 42 43
template <typename Device, typename T>
Executor<Device, T>::Executor(const Program<Device> &program, int batch_size,
                              const bool use_optimize, const bool lod_mode)
    : program_(program),
H
hjchen2 已提交
44 45
      batch_size_(batch_size),
      use_optimize_(use_optimize),
46 47 48
      lod_mode_(lod_mode) {
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
49
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
50
  variable_ptr->SetValue<int>(batch_size);
51 52

  program_desc_ =
Refine  
陈后江 已提交
53
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
54 55 56 57
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
  const auto &blocks = program_desc_->Blocks();
  ops_of_block_.resize(blocks.size());
58

W
wangliu 已提交
59
  for (int i = 0; i < blocks.size(); ++i) {
60 61
    std::shared_ptr<BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
W
wangliu 已提交
62
    for (int j = 0; j < ops.size(); ++j) {
63 64 65 66 67 68 69 70 71
      std::shared_ptr<OpDesc> op_desc = ops[j];
      DLOG << "create op: " << op_desc->Type();
      auto op_handler = OpRegistry<Device>::CreateOp(
          op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
          op_desc->GetAttrMap(), program_.scope);
      // infer shape to reshape inputs and outputs before predict,
      // but for lod mode, it still need to infer shape in runtime
      if (!lod_mode) {
        op_handler->InferShape();
xiebaiyuan's avatar
xiebaiyuan 已提交
72
      }
73
      ops_of_block_[i].push_back(op_handler);
W
wangliu 已提交
74 75
    }
  }
76

W
wangliu 已提交
77
  if (program_.combined) {
L
liuruilong 已提交
78 79 80 81
    InitCombineMemory();
  } else {
    InitMemory();
  }
82 83 84 85 86 87 88 89

  int count = 0;
  for (int block_id = 0; block_id < ops_of_block_.size(); ++block_id) {
    for (auto &op_handler : ops_of_block_[block_id]) {
      DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
      op_handler->Init();
      ops_list_.push_back(op_handler);
    }
L
liuruilong 已提交
90
  }
W
wangliu 已提交
91 92
}

93
template <typename T>
94
static void LoadMemInternal(void **data, LoDTensor *tensor,
95
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
96
  char **data_buf = reinterpret_cast<char **>(data);
97
  int64_t size = tensor->numel();
98
  T *tensor_data = tensor->mutable_data<T>();
99 100
  if (quant_uint8) {
    // should be moved into operator init function
101 102
    float min_value;
    float max_value;
103 104 105
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
106
    const float factor = (max_value - min_value) / 255.0;
107
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
108 109
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
110
    }
111
    *data_buf += size * sizeof(uint8_t);
112
  } else {
113 114
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
115
  }
116
}
W
wangliu 已提交
117

118 119 120 121
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
122
  char **data_buf = reinterpret_cast<char **>(data);
123
  // version
124
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
125
  *data_buf += sizeof(uint32_t);
126
  // lod information
H
hjchen2 已提交
127 128
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
129
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
130
  *data_buf += sizeof(uint64_t);
131 132 133 134

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
135
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
136
    *data_buf += sizeof(uint64_t);
137
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
138
    memory::Copy(tmp_dim.data(), *data_buf, size);
139
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
140
    *data_buf += size;
W
wangliu 已提交
141
  }
142
  // tensor version
143
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
144
  *data_buf += sizeof(uint32_t);
145
  // tensor desc size
146
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
147
  *data_buf += sizeof(int32_t);
148
  // skip tensor desc
Refine  
陈后江 已提交
149
  *data_buf += tensor_desc_size;
150

151 152
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
153 154
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
155
    case VARTYPE_TYPE_FP32:
156 157
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
158
      break;
159
    case VARTYPE_TYPE_INT8:
160
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
161
      break;
162
    case VARTYPE_TYPE_INT32:
163
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
164 165
      break;
    default:
166
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
167
  }
W
wangliu 已提交
168 169
}

170 171 172
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
173 174
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
175
      auto tensor = var->template GetMutable<LoDTensor>();
W
wangliu 已提交
176 177 178 179
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
Refine  
陈后江 已提交
180
        char *origin_data =
Refine  
陈后江 已提交
181
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
182
        char *data = origin_data;
183 184
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
185
      } else {
186
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
187
          varInputMemory(var_desc, var, tensor);
W
wangliu 已提交
188 189 190 191 192 193
        }
      }
    }
  }
}

194 195
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
196
  char *origin_data = nullptr;
Refine  
陈后江 已提交
197
  bool self_alloc = false;
198
  if (program_.combined_params_buf && program_.combined_params_len) {
199 200
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
201
  } else {
Refine  
陈后江 已提交
202
    self_alloc = true;
Refine  
陈后江 已提交
203
    origin_data = ReadFileToBuff(program_.para_path);
204
  }
Refine  
陈后江 已提交
205 206
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
207
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
208 209
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
210
      auto tensor = var->template GetMutable<LoDTensor>();
L
liuruilong 已提交
211 212 213 214
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
215
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
216
      } else {
217
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
218
          varInputMemory(var_desc, var, tensor);
L
liuruilong 已提交
219 220 221 222
        }
      }
    }
  }
Refine  
陈后江 已提交
223
  if (self_alloc) {
224
    delete[] origin_data;
Refine  
陈后江 已提交
225 226
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
227
}
228

229 230 231 232
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
    const std::shared_ptr<VarDesc> &var_desc, Variable *var,
    LoDTensor *tensor) const {
233 234 235 236
#ifdef PADDLE_MOBILE_FPGA
  tensor->init(typeid(float));
  return true;
#endif
237 238
  auto type = var_desc->Tensor_desc().DataType();
  switch (type) {
239
    case VARTYPE_TYPE_FP32:
240
      tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
241
      break;
242
    case VARTYPE_TYPE_INT8:
243
      tensor->mutable_data<int8_t>();
Refine  
陈后江 已提交
244
      break;
245
    case VARTYPE_TYPE_INT32:
246
      tensor->mutable_data<int32_t>();
xiebaiyuan's avatar
xiebaiyuan 已提交
247
      break;
248
    case VARTYPE_TYPE_INT64:
249
      tensor->mutable_data<int64_t>();
xiebaiyuan's avatar
xiebaiyuan 已提交
250
      break;
Refine  
陈后江 已提交
251
    default:
xiebaiyuan's avatar
xiebaiyuan 已提交
252 253
      break;
  }
254 255 256
  bool is_mute_match =
      (type == VARTYPE_TYPE_FP32) || (type == VARTYPE_TYPE_INT8) ||
      (type == VARTYPE_TYPE_INT32) || (type == VARTYPE_TYPE_INT64);
Refine  
陈后江 已提交
257
  PADDLE_MOBILE_ENFORCE(is_mute_match, "got unhandled data type : %d", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
258 259
  return is_mute_match;
}
L
liuruilong 已提交
260

261 262 263 264 265
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
266
  }
267 268 269 270 271 272 273 274
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
275
  }
276
  return this->Predict();
W
wangliu 已提交
277
}
xiebaiyuan's avatar
xiebaiyuan 已提交
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
  Tensor feed_tensor(input, make_ddim(dims));
  SetInput(feed_tensor, "feed");
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
    const auto output_tensor = GetOutput("fetch");
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
293

294 295 296 297 298 299 300 301 302 303
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
  auto *target_var = program_.scope->FindVar(var_name);
  PADDLE_MOBILE_ENFORCE(target_var != nullptr, "Variable %s is not exist",
                        var_name.c_str());
  auto *target_tensor = target_var->template GetMutable<LoDTensor>();
  target_tensor->Resize(input.dims());
  target_tensor->ShareDataWith(input);
}
xiebaiyuan's avatar
xiebaiyuan 已提交
304

305 306 307 308 309 310 311 312 313 314 315
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
  auto *target_var = program_.scope->FindVar(var_name);
  PADDLE_MOBILE_ENFORCE(target_var != nullptr, "Variable %s is not exist",
                        var_name.c_str());
  auto *target_tensor = target_var->template GetMutable<LoDTensor>();
  target_tensor->Resize(input.dims());
  target_tensor->ShareDataWith(input);
  target_tensor->set_lod(input.lod());
}
xiebaiyuan's avatar
xiebaiyuan 已提交
316

317 318
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
xiebaiyuan's avatar
xiebaiyuan 已提交
319
#ifdef PADDLE_MOBILE_PROFILE
320 321 322
  std::vector<ProfInfo> profile(ops_list_.size());
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
323
#endif
324 325
  for (auto &block : ops_of_block_) {
    for (auto &op_handler : block) {
xiebaiyuan's avatar
xiebaiyuan 已提交
326
#ifdef PADDLE_MOBILE_PROFILE
327 328
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
329
#endif
330 331 332 333
      if (lod_mode_) {
        op_handler->InferShape();
      }
      op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
334
#ifdef PADDLE_MOBILE_PROFILE
335 336 337
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
      ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
338
#endif
339
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
340 341 342 343 344 345
  }
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
346 347 348 349 350
    if (ops_list_[i]->Type() == "conv2d" ||
        ops_list_[i]->Type() == "depthwise_conv2d") {
      auto inputs = ops_list_[i]->Inputs();
      auto *filter =
          GetVarValue<LoDTensor>("Filter", inputs, *(program_.scope));
351
      int kernel_size = filter->dims()[2];
352 353 354
      _tp[ops_list_[i]->Type() + "_" + std::to_string(kernel_size)] += timeCost;
    } else {
      _tp[ops_list_[i]->Type()] += timeCost;
355
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
356
  }
H
hjchen2 已提交
357
  printf("====================[ profile ]======================\n");
358
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
374
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
375
#endif
376
  return PMSuccess;
xiebaiyuan's avatar
xiebaiyuan 已提交
377 378
}

379 380 381 382 383 384 385 386
template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
  auto *target_var = program_.scope->FindVar(var_name);
  PADDLE_MOBILE_ENFORCE(target_var != nullptr, "Variable %s is not exist",
                        var_name.c_str());
  auto *output_tensor = target_var->template GetMutable<LoDTensor>();
  return std::make_shared<LoDTensor>(*output_tensor);
W
wangliu 已提交
387 388
}

389
#ifdef PADDLE_MOBILE_FPGA
390 391 392 393 394
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
  Tensor *feed_tensor = g_feed_value->GetMutable<LoDTensor>();
395 396
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
397
}
398

399 400
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
401
  InjectVariable(t, "feed");
402
}
403

404 405
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
H
hjchen2 已提交
406
  auto &ops = ops_of_block_[0];
407

Z
zhangyang 已提交
408 409 410 411 412
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
413 414 415
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
416
}
417

418 419
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
H
hjchen2 已提交
420
  auto &ops = ops_of_block_[0];
421
  end = end < 0 ? static_cast<int>(ops.size()) : end;
422 423 424 425 426 427 428 429 430 431 432 433
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
434
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
435 436 437 438 439 440 441
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
442
}
443

444 445
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
446
  Predict_From_To(start);
447
}
448

449 450
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
451
  Predict_From_To(0, end);
452
}
453 454
#endif

Y
yangfei 已提交
455
#ifdef PADDLE_MOBILE_CL
456 457 458
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
459

Y
yangfei 已提交
460
template <>
H
hjchen2 已提交
461 462
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

500
  const TensorDesc &desc = var_desc.Tensor_desc();
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
535

Y
yangfei 已提交
536
template <>
537 538
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
539 540 541
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
542
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
543
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
544
          var->template GetMutable<LoDTensor>();
Y
yangfei 已提交
545
          continue;
L
liuruilong 已提交
546
        } else {
547
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
548
        }
L
liuruilong 已提交
549

Y
yangfei 已提交
550
        char *origin_data =
L
liuruilong 已提交
551
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
552
        char *data = origin_data;
Y
yangfei 已提交
553
        cl_context context = program_.scope->GetCLScpoe()->Context();
554
        const TensorDesc &desc = var_desc->Tensor_desc();
555 556 557 558 559
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
560
        float *tensorInput = static_cast<float *>(
561 562
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
563

564
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
565

L
liuruilong 已提交
566 567
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
568

569
        delete origin_data;
Y
yangfei 已提交
570
        paddle_mobile::memory::Free(tensorInput);
571
      } else {
572 573
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
574
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
575 576
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
577

578 579 580
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
581
          DLOG << var_desc->Name();
L
liuruilong 已提交
582
          cl_image->InitEmptyImage(context, command_queue, ddim);
583
        }
Y
yangfei 已提交
584 585 586 587
      }
    }
  }
}
588

Y
yangfei 已提交
589
template <>
590
void Executor<GPU_CL, float>::InitCombineMemory() {
Y
yangfei 已提交
591 592
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
593 594
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
595
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
596 597
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
598
    self_alloc = true;
L
liuruilong 已提交
599
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
600 601
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
602
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
603

604
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
605 606 607
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
608
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
609
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
610
          var->template GetMutable<LoDTensor>();
Y
yangfei 已提交
611
          continue;
L
liuruilong 已提交
612
        } else {
613
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
614 615 616 617
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

618 619
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
620 621 622 623 624

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
625 626 627
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
628 629 630 631

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

632 633
        paddle_mobile::memory::Free(tensorInput);
      } else {
634
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
635
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
636 637
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
638 639 640
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
641
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
642 643 644
      }
    }
  }
Y
yangfei 已提交
645
  if (self_alloc) {
646
    delete data;
Y
yangfei 已提交
647
  }
Y
yangfei 已提交
648
  LOG(kLOG_INFO) << " end init combine memory ";
649
}
Y
yangfei 已提交
650 651 652

#endif

653
template class Executor<CPU, float>;
Y
yangfei 已提交
654

655
template class Executor<FPGA, float>;
W
wangliu 已提交
656

657
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
658

659
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
660 661

}  // namespace framework
W
wangliu 已提交
662
}  // namespace paddle_mobile