transpose_op_test.cc 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/transpose_op.h"
#include <gtest/gtest.h>
#include "lite/core/op_registry.h"
18
#include "lite/core/subgraph_bridge_registry.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
#include "lite/kernels/mlu/bridges/test_helper.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

int data_index(std::vector<int> pos, DDimLite dims) {
  int d1 = dims[1];
  int d2 = dims[2];
  int d3 = dims[3];
  return pos[3] + pos[2] * d3 + pos[1] * d3 * d2 + pos[0] * d3 * d2 * d1;
}

std::vector<int> pos_trans(std::vector<int> in_pos, std::vector<int> axis) {
  std::vector<int> out_pos(in_pos.size());
  for (size_t i = 0; i < axis.size(); i++) {
    out_pos[axis[i]] = in_pos[i];
  }
  return out_pos;
}

template <typename dtype>
void transpose_ref(const std::shared_ptr<operators::TransposeOp> op) {
  Scope* scope = op->scope();
  const OpInfo* op_info = op->op_info();

  auto input =
      scope->FindVar(op_info->Input("X").front())->GetMutable<Tensor>();
  auto output =
      scope->FindVar(op_info->Output("Out").front())->GetMutable<Tensor>();
  auto x_dims = input->dims();
  auto y_dims = output->dims();
  auto axis = op_info->GetAttr<std::vector<int>>("axis");

  // auto input_data = input->data<dtype>();
  auto* input_data = input->mutable_data<dtype>();
  auto* output_data = output->mutable_data<dtype>();

  int input_n = x_dims[0];
  int input_c = x_dims[1];
  int input_h = x_dims[2];
  int input_w = x_dims[3];

  for (int n = 0; n < input_n; ++n) {
    for (int c = 0; c < input_c; ++c) {
      for (int h = 0; h < input_h; ++h) {
        for (int w = 0; w < input_w; ++w) {
          std::vector<int> in_pos{n, c, h, w};
          std::vector<int> out_pos = pos_trans(in_pos, axis);
          int in_index = data_index(in_pos, x_dims);
          int out_index = data_index(out_pos, y_dims);
          output_data[out_index] = input_data[in_index];
        }
      }
    }
  }
}

void test_transpose(const std::vector<int64_t>& input_shape,
                    std::vector<int> axis) {
  // prepare input&output variables
  Scope scope;
  std::string x_var_name = "x";
  std::string out_var_name = "out";
  std::string out_ref_var_name = "out_ref";
  auto* x = scope.Var(x_var_name)->GetMutable<Tensor>();
  auto* out = scope.Var(out_var_name)->GetMutable<Tensor>();
  auto* out_ref = scope.Var(out_ref_var_name)->GetMutable<Tensor>();
  x->Resize(input_shape);

  // initialize input&output data
  FillTensor<float>(x);

  // initialize op desc
  cpp::OpDesc opdesc;
  opdesc.SetType("transpose");
  opdesc.SetInput("X", {x_var_name});
  opdesc.SetOutput("Out", {out_var_name});
  opdesc.SetAttr("axis", axis);

  // create and convert op to MLU model, then run it on MLU
  auto op = CreateOp<operators::TransposeOp>(opdesc, &scope);

  // transpose_ref  must run befor LaunchOp
  // otherwise get Cannot access memory
  // execute reference implementation and save to output tensor
  transpose_ref<float>(op);
  out_ref->CopyDataFrom(*out);

  Tensor input_x;
  input_x.Resize(DDim(input_shape));
  transpose(x->mutable_data<float>(),
            input_x.mutable_data<float>(),
            {static_cast<int>(input_shape[0]),
             static_cast<int>(input_shape[1]),
             static_cast<int>(input_shape[2]),
             static_cast<int>(input_shape[3])},
            {0, 2, 3, 1});
  x->CopyDataFrom(input_x);

  LaunchOp(op, {x_var_name}, {out_var_name});
  // compare results
  auto* out_data = out->mutable_data<float>();
  auto* out_ref_data = out_ref->mutable_data<float>();

  Tensor output_trans;
  output_trans.Resize(out->dims());
  auto os = out->dims();
  transpose(out_data,
            output_trans.mutable_data<float>(),
            {static_cast<int>(os[0]),
             static_cast<int>(os[2]),
             static_cast<int>(os[3]),
             static_cast<int>(os[1])},
            {0, 3, 1, 2});
  out_data = output_trans.mutable_data<float>();
  for (int i = 0; i < out->dims().production(); i++) {
    EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2);
  }
}

// TODO(pmshst): fix the transpose test
TEST(MLUBridges, transpose) {
  std::vector<int64_t> input_shape = {2, 3, 4, 5};
  test_transpose(input_shape, std::vector<int>{0, 1, 3, 2});
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

USE_SUBGRAPH_BRIDGE(transpose, kMLU);
USE_SUBGRAPH_BRIDGE(transpose2, kMLU);