// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/transpose_op.h" #include #include "lite/core/op_registry.h" #include "lite/core/subgraph_bridge_registry.h" #include "lite/kernels/mlu/bridges/test_helper.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { int data_index(std::vector pos, DDimLite dims) { int d1 = dims[1]; int d2 = dims[2]; int d3 = dims[3]; return pos[3] + pos[2] * d3 + pos[1] * d3 * d2 + pos[0] * d3 * d2 * d1; } std::vector pos_trans(std::vector in_pos, std::vector axis) { std::vector out_pos(in_pos.size()); for (size_t i = 0; i < axis.size(); i++) { out_pos[axis[i]] = in_pos[i]; } return out_pos; } template void transpose_ref(const std::shared_ptr op) { Scope* scope = op->scope(); const OpInfo* op_info = op->op_info(); auto input = scope->FindVar(op_info->Input("X").front())->GetMutable(); auto output = scope->FindVar(op_info->Output("Out").front())->GetMutable(); auto x_dims = input->dims(); auto y_dims = output->dims(); auto axis = op_info->GetAttr>("axis"); // auto input_data = input->data(); auto* input_data = input->mutable_data(); auto* output_data = output->mutable_data(); int input_n = x_dims[0]; int input_c = x_dims[1]; int input_h = x_dims[2]; int input_w = x_dims[3]; for (int n = 0; n < input_n; ++n) { for (int c = 0; c < input_c; ++c) { for (int h = 0; h < input_h; ++h) { for (int w = 0; w < input_w; ++w) { std::vector in_pos{n, c, h, w}; std::vector out_pos = pos_trans(in_pos, axis); int in_index = data_index(in_pos, x_dims); int out_index = data_index(out_pos, y_dims); output_data[out_index] = input_data[in_index]; } } } } } void test_transpose(const std::vector& input_shape, std::vector axis) { // prepare input&output variables Scope scope; std::string x_var_name = "x"; std::string out_var_name = "out"; std::string out_ref_var_name = "out_ref"; auto* x = scope.Var(x_var_name)->GetMutable(); auto* out = scope.Var(out_var_name)->GetMutable(); auto* out_ref = scope.Var(out_ref_var_name)->GetMutable(); x->Resize(input_shape); // initialize input&output data FillTensor(x); // initialize op desc cpp::OpDesc opdesc; opdesc.SetType("transpose"); opdesc.SetInput("X", {x_var_name}); opdesc.SetOutput("Out", {out_var_name}); opdesc.SetAttr("axis", axis); // create and convert op to MLU model, then run it on MLU auto op = CreateOp(opdesc, &scope); // transpose_ref must run befor LaunchOp // otherwise get Cannot access memory // execute reference implementation and save to output tensor transpose_ref(op); out_ref->CopyDataFrom(*out); Tensor input_x; input_x.Resize(DDim(input_shape)); transpose(x->mutable_data(), input_x.mutable_data(), {static_cast(input_shape[0]), static_cast(input_shape[1]), static_cast(input_shape[2]), static_cast(input_shape[3])}, {0, 2, 3, 1}); x->CopyDataFrom(input_x); LaunchOp(op, {x_var_name}, {out_var_name}); // compare results auto* out_data = out->mutable_data(); auto* out_ref_data = out_ref->mutable_data(); Tensor output_trans; output_trans.Resize(out->dims()); auto os = out->dims(); transpose(out_data, output_trans.mutable_data(), {static_cast(os[0]), static_cast(os[2]), static_cast(os[3]), static_cast(os[1])}, {0, 3, 1, 2}); out_data = output_trans.mutable_data(); for (int i = 0; i < out->dims().production(); i++) { EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2); } } // TODO(pmshst): fix the transpose test TEST(MLUBridges, transpose) { std::vector input_shape = {2, 3, 4, 5}; test_transpose(input_shape, std::vector{0, 1, 3, 2}); } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle USE_SUBGRAPH_BRIDGE(transpose, kMLU); USE_SUBGRAPH_BRIDGE(transpose2, kMLU);