norm_op_test.cc 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/norm_op.h"

#include <gtest/gtest.h>

#include <cmath>
#include <iostream>

#include "lite/core/op_registry.h"
23
#include "lite/core/subgraph_bridge_registry.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/mlu/bridges/utility.h"
namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

// void ToFile(std::string file_name, Tensor* tensor) {
//   int count = tensor->dims().production();
//   auto data = tensor->mutable_data<float>();
//   std::ostringstream outs;
//   for (size_t i = 0; i < count; i++) {
//     outs << data[i] << std::endl;
//   }
//   std::ofstream of;
//   of.open(file_name, std::ios::out);
//   of << outs.str();
//   of.close();
// }

void norm_ref(const std::shared_ptr<operators::NormOp> op) {
  Scope* scope = op->scope();
  const OpInfo* op_info = op->op_info();
  auto x = scope->FindVar(op_info->Input("X").front())->GetMutable<Tensor>();
  auto out =
      scope->FindVar(op_info->Output("Out").front())->GetMutable<Tensor>();
  int axis = op_info->GetAttr<int>("axis");
  int epsilon = op_info->GetAttr<float>("epsilon");
  auto x_dims = x->dims();
  if (axis < 0) {
    axis += x_dims.size();
  }
  out->Resize(x_dims.Vectorize());
  auto* out_data = out->mutable_data<float>();

  const auto* x_data = x->data<float>();
  int pre_n = x_dims.count(0, axis);
  int n = x_dims[axis];
  int post_n = x_dims.count(axis + 1, x_dims.size());
  for (int i = 0; i < pre_n; i++) {
    for (int k = 0; k < post_n; k++) {
      float sum = epsilon;
      const float* in_tmp = x_data + i * n * post_n + k;
      for (int j = 0; j < n; j++) {
        sum += in_tmp[j * post_n] * in_tmp[j * post_n];
      }
      sum = std::sqrt(sum);
      float* out_tmp = out_data + i * n * post_n + k;
      for (int j = 0; j < n; j++) {
        out_tmp[j * post_n] = in_tmp[j * post_n] / sum;
      }
    }
  }
}

void test_norm(const std::vector<int64_t>& input_shape, int axis) {
  // prepare input&output variables
  Scope scope;
  std::string x_var_name = "x";
  std::string out_var_name = "out";
  std::string out_ref_var_name = "out_ref";
  auto* x = scope.Var(x_var_name)->GetMutable<Tensor>();
  auto* out = scope.Var(out_var_name)->GetMutable<Tensor>();
  auto* out_ref = scope.Var(out_ref_var_name)->GetMutable<Tensor>();
  x->Resize(input_shape);
  // initialize input&output data
  FillTensor<float, float>(x, -9, 9);
  // initialize op desc
  cpp::OpDesc opdesc;
  float epsilon = 1e-9f;
  opdesc.SetType("norm");
  opdesc.SetInput("X", {x_var_name});
  opdesc.SetOutput("Out", {out_var_name});
  opdesc.SetAttr("axis", static_cast<int>(axis));
  opdesc.SetAttr("epsilon", static_cast<float>(epsilon));

  // create and convert op to MLU model, then run it on MLU
  auto op = CreateOp<operators::NormOp>(opdesc, &scope);
  norm_ref(op);
  out_ref->CopyDataFrom(*out);
  Tensor input_x;
  input_x.Resize(DDim(input_shape));
  // change input layout from NCHW to NHWC
  transpose<float>(x->mutable_data<float>(),
                   input_x.mutable_data<float>(),
                   {static_cast<int>(input_shape[0]),
                    static_cast<int>(input_shape[1]),
                    static_cast<int>(input_shape[2]),
                    static_cast<int>(input_shape[3])},
                   {0, 2, 3, 1});
  x->CopyDataFrom(input_x);

  LaunchOp(op, {x_var_name}, {out_var_name});
  auto* out_data = out->mutable_data<float>();
  auto* out_ref_data = out_ref->mutable_data<float>();
  std::vector<int64_t> out_shape = input_shape;
  Tensor output_trans;
  output_trans.Resize(out_shape);
  // Change output layout from NHWC to NCHW
  transpose<float>(out_data,
                   output_trans.mutable_data<float>(),
                   {static_cast<int>(out_shape[0]),
                    static_cast<int>(out_shape[2]),
                    static_cast<int>(out_shape[3]),
                    static_cast<int>(out_shape[1])},
                   {0, 3, 1, 2});
  out_data = output_trans.mutable_data<float>();

  for (int i = 0; i < out->dims().production(); i++) {
    EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2);
  }
}

TEST(MLUBridges, norm) {
  test_norm({1, 2, 3, 4}, 1);
  test_norm({1, 2, 3, 4}, 2);
  test_norm({1, 2, 3, 4}, 3);
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

USE_SUBGRAPH_BRIDGE(norm, kMLU);