Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
be7cc8f8
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
be7cc8f8
编写于
7月 10, 2020
作者:
M
MaxwellDing
提交者:
GitHub
7月 10, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] feat: add extra kernels, test=develop (#3919)
add op lrn norm gather
上级
37cb221e
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
801 addition
and
0 deletion
+801
-0
lite/kernels/mlu/bridges/CMakeLists.txt
lite/kernels/mlu/bridges/CMakeLists.txt
+19
-0
lite/kernels/mlu/bridges/gather_op.cc
lite/kernels/mlu/bridges/gather_op.cc
+64
-0
lite/kernels/mlu/bridges/gather_op_test.cc
lite/kernels/mlu/bridges/gather_op_test.cc
+133
-0
lite/kernels/mlu/bridges/lrn_op.cc
lite/kernels/mlu/bridges/lrn_op.cc
+79
-0
lite/kernels/mlu/bridges/lrn_op_test.cc
lite/kernels/mlu/bridges/lrn_op_test.cc
+242
-0
lite/kernels/mlu/bridges/norm_op.cc
lite/kernels/mlu/bridges/norm_op.cc
+111
-0
lite/kernels/mlu/bridges/norm_op_test.cc
lite/kernels/mlu/bridges/norm_op_test.cc
+148
-0
lite/kernels/mlu/bridges/paddle_use_bridges.h
lite/kernels/mlu/bridges/paddle_use_bridges.h
+5
-0
未找到文件。
lite/kernels/mlu/bridges/CMakeLists.txt
浏览文件 @
be7cc8f8
...
...
@@ -55,6 +55,18 @@ set(mlu_subgraph_bridges
CACHE INTERNAL
"mlu_subgraph_bridges"
)
if
(
LITE_BUILD_EXTRA
)
lite_cc_library
(
subgraph_bridge_lrn_op_mlu SRCS lrn_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_gather_op_mlu SRCS gather_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_norm_op_mlu SRCS norm_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
set
(
mlu_subgraph_bridges
"
${
mlu_subgraph_bridges
}
"
subgraph_bridge_lrn_op_mlu
subgraph_bridge_gather_op_mlu
subgraph_bridge_norm_op_mlu
CACHE INTERNAL
"mlu_subgraph_bridges"
)
endif
()
lite_cc_library
(
subgraph_test_helper_mlu SRCS test_helper.cc DEPS
${
mlu_subgraph_bridges
}
)
lite_cc_test
(
test_conv_converter_mlu SRCS conv_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_act_converter_mlu SRCS act_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
...
...
@@ -76,4 +88,11 @@ lite_cc_test(test_argmax_converter_mlu SRCS argmax_op_test.cc DEPS scope optimiz
lite_cc_test
(
test_squeeze_converter_mlu SRCS squeeze_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_reshape_converter_mlu SRCS reshape_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_flatten_converter_mlu SRCS flatten_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
if
(
LITE_BUILD_EXTRA
)
lite_cc_test
(
test_norm_converter_mlu SRCS norm_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_lrn_converter_mlu SRCS lrn_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_gather_converter_mlu SRCS gather_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
endif
()
message
(
STATUS
"+++++ mlu_subgraph_bridges:
${
mlu_subgraph_bridges
}
"
)
lite/kernels/mlu/bridges/gather_op.cc
0 → 100644
浏览文件 @
be7cc8f8
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
int
GatherConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
scope
=
op
->
scope
();
VLOG
(
3
)
<<
"[MLU] Converting "
+
op_type
+
"..."
;
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
index_var_name
=
op_info
->
Input
(
"Index"
).
front
();
auto
out_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
output_dims
=
output
->
dims
().
Vectorize
();
CHECK
(
graph
->
HasNode
(
x_var_name
));
auto
x_tensor
=
graph
->
GetNode
(
x_var_name
);
auto
index_tensor
=
graph
->
GetNode
(
index_var_name
);
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
cnmlBaseOp_t
gather_op
;
CNML_CALL
(
cnmlCreateGatherV2Op
(
&
gather_op
,
x_tensor
->
mlu_tensor
(),
index_tensor
->
mlu_tensor
(),
output_tensor
->
mlu_tensor
(),
CNML_DIM_N
));
graph
->
FuseOp
(
gather_op
);
CNML_CALL
(
cnmlDestroyBaseOp
(
&
gather_op
));
return
SUCCESS
;
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
gather
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
GatherConverter
);
lite/kernels/mlu/bridges/gather_op_test.cc
0 → 100644
浏览文件 @
be7cc8f8
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/gather_op.h"
#include <gtest/gtest.h>
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
template
<
typename
dtype
>
void
gather_ref
(
const
std
::
shared_ptr
<
operators
::
GatherOp
>
op
)
{
Scope
*
scope
=
op
->
scope
();
const
OpInfo
*
op_info
=
op
->
op_info
();
auto
x
=
scope
->
FindVar
(
op_info
->
Input
(
"X"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
index
=
scope
->
FindVar
(
op_info
->
Input
(
"Index"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
out
=
scope
->
FindVar
(
op_info
->
Output
(
"Out"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
x_dims
=
x
->
dims
();
auto
index_dims
=
index
->
dims
();
CHECK
(
index_dims
.
size
()
==
1
||
(
index_dims
.
size
()
==
2
&&
index_dims
[
1
]
==
1
));
int
batch_size
=
index_dims
[
0
];
DDim
out_dims
=
x_dims
;
out_dims
[
0
]
=
batch_size
;
out
->
Resize
(
out_dims
);
auto
x_data
=
x
->
data
<
float
>
();
auto
index_data
=
index
->
data
<
int
>
();
auto
out_data
=
out
->
mutable_data
<
float
>
();
auto
slice_num
=
x_dims
[
0
];
auto
slice_size
=
x_dims
.
Slice
(
1
,
x_dims
.
size
()).
production
();
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
auto
index
=
index_data
[
i
];
CHECK_LT
(
index
,
slice_num
)
<<
"index <= slice_num"
;
CHECK_GE
(
index
,
0
)
<<
"index > 0"
;
memcpy
(
out_data
+
i
*
slice_size
,
x_data
+
index
*
slice_size
,
slice_size
*
sizeof
(
float
));
}
}
void
test_gather
()
{
// prepare input&output variables
std
::
string
x_var_name
=
"x"
;
std
::
string
out_var_name
=
"out"
;
std
::
string
out_ref_var_name
=
"out_ref"
;
std
::
string
index_var_name
=
"index"
;
Scope
scope
;
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref
=
scope
.
Var
(
out_ref_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
index
=
scope
.
Var
(
index_var_name
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
({
5
,
4
,
3
,
2
});
index
->
Resize
({
2
});
// initialize input&output data
FillTensor
<
float
>
(
x
);
FillTensor
<
int
>
(
index
,
1
,
3
);
// initialize op desc
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"gather"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetInput
(
"Index"
,
{
index_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
auto
op
=
CreateOp
<
operators
::
GatherOp
>
(
opdesc
,
&
scope
);
gather_ref
<
float
>
(
op
);
out_ref
->
CopyDataFrom
(
*
out
);
Tensor
input
;
input
.
Resize
({
5
,
4
,
3
,
2
});
transpose
<
float
>
(
x
->
mutable_data
<
float
>
(),
input
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
5
),
static_cast
<
int
>
(
4
),
static_cast
<
int
>
(
3
),
static_cast
<
int
>
(
2
)},
{
0
,
2
,
3
,
1
});
x
->
CopyDataFrom
(
input
);
LaunchOp
(
op
,
{
x_var_name
,
index_var_name
},
{
out_var_name
});
// compare results
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
auto
*
out_ref_data
=
out_ref
->
mutable_data
<
float
>
();
Tensor
output
;
output
.
Resize
(
out
->
dims
());
transpose
<
float
>
(
out_data
,
output
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
out
->
dims
()[
0
]),
static_cast
<
int
>
(
out
->
dims
()[
2
]),
static_cast
<
int
>
(
out
->
dims
()[
3
]),
static_cast
<
int
>
(
out
->
dims
()[
1
])},
{
0
,
3
,
1
,
2
});
out_data
=
output
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
VLOG
(
5
)
<<
i
;
EXPECT_NEAR
(
out_data
[
i
],
out_ref_data
[
i
],
5e-4
);
}
}
TEST
(
MLUBridges
,
gather
)
{
test_gather
();
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
USE_SUBGRAPH_BRIDGE
(
gather
,
kMLU
);
lite/kernels/mlu/bridges/lrn_op.cc
0 → 100644
浏览文件 @
be7cc8f8
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
int
LrnConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
scope
=
op
->
scope
();
VLOG
(
3
)
<<
"[MLU] Converting "
+
op_type
+
"..."
;
// Create lrn node and get params from op
auto
fp_type
=
graph
->
FPType
();
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
out_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
output_dims
=
output
->
dims
().
Vectorize
();
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
fp_type
);
CHECK
(
graph
->
HasNode
(
x_var_name
));
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
auto
alpha
=
op_info
->
GetAttr
<
float
>
(
"alpha"
);
auto
beta
=
op_info
->
GetAttr
<
float
>
(
"beta"
);
auto
k
=
op_info
->
GetAttr
<
float
>
(
"k"
);
if
(
op_info
->
HasAttr
(
"norm_region"
))
{
CHECK
(
op_info
->
GetAttr
<
std
::
string
>
(
"norm_region"
)
==
"AcrossChannels"
)
<<
"Unsuport WithinChannel"
;
}
auto
local_size
=
op_info
->
GetAttr
<
int
>
(
"n"
);
CHECK
(
op_info
->
HasAttr
(
"input_scale"
));
auto
input_scale
=
op_info
->
GetAttr
<
float
>
(
"input_scale"
);
VLOG
(
5
)
<<
"lrn input scale: "
<<
input_scale
;
cnmlLrnOpParam_t
param
;
cnmlBaseOp_t
lrn_op
;
CNML_CALL
(
cnmlCreateLrnOpParam
(
&
param
,
CNML_LRN_V3
,
local_size
,
alpha
,
beta
,
k
));
CNML_CALL
(
cnmlCreateLrnOp
(
&
lrn_op
,
param
,
input_tensor
->
mlu_tensor
(),
output_tensor
->
mlu_tensor
()));
CNML_CALL
(
cnmlDestroyLrnOpParam
(
&
param
));
graph
->
SetComputingDataType
(
lrn_op
,
input_tensor
->
mlu_tensor
(),
1
/
input_scale
);
CNML_CALL
(
cnmlSetOperationComputingDataType
(
lrn_op
,
output_tensor
->
mlu_tensor
(),
fp_type
,
nullptr
));
graph
->
FuseOp
(
lrn_op
);
CNML_CALL
(
cnmlDestroyBaseOp
(
&
lrn_op
));
return
SUCCESS
;
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
lrn
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
LrnConverter
);
lite/kernels/mlu/bridges/lrn_op_test.cc
0 → 100644
浏览文件 @
be7cc8f8
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/lrn_op.h"
#include <gtest/gtest.h>
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
/**
* @brief get sum of x^2 between channels [size elements]
*
* @tparam float
* @param input
* @param channel_id: the c-th channel within n-th graph.
* @param offset_within_channel: the pixel's offset within a channel.
* @param offset_num: the first address of n-th graph.
* @param c
* @param h
* @param w
* @param size
* @return float
*/
float
lrn_square
(
const
float
*
input
,
int
channel_id
,
int
offset_within_channel
,
int
offset_num
,
int
c
,
int
h
,
int
w
,
int
size
)
{
int
pre_pad
=
(
size
-
1
)
/
2
;
float
res
=
0
;
const
float
*
src
=
input
+
offset_num
;
// handle left channels with padding situation.
if
(
channel_id
-
pre_pad
<
0
)
{
for
(
int
i
=
0
;
i
<=
channel_id
;
++
i
)
{
res
+=
src
[
i
*
h
*
w
+
offset_within_channel
]
*
src
[
i
*
h
*
w
+
offset_within_channel
];
}
}
// handle left channels.
if
(
channel_id
-
pre_pad
>=
0
)
{
for
(
int
i
=
channel_id
-
pre_pad
;
i
<=
channel_id
;
++
i
)
{
res
+=
src
[
i
*
h
*
w
+
offset_within_channel
]
*
src
[
i
*
h
*
w
+
offset_within_channel
];
}
}
// handle right channels.
if
(
channel_id
+
pre_pad
<
c
)
{
for
(
int
i
=
channel_id
+
1
;
i
<=
channel_id
+
pre_pad
;
++
i
)
{
res
+=
src
[
i
*
h
*
w
+
offset_within_channel
]
*
src
[
i
*
h
*
w
+
offset_within_channel
];
}
}
// handle right channels with padding situation.
if
(
channel_id
+
pre_pad
>=
c
&&
channel_id
+
1
<
c
)
{
for
(
int
i
=
channel_id
+
1
;
i
<
c
;
++
i
)
{
res
+=
src
[
i
*
h
*
w
+
offset_within_channel
]
*
src
[
i
*
h
*
w
+
offset_within_channel
];
}
}
return
res
;
}
void
lrn_compute_ref
(
std
::
shared_ptr
<
operators
::
LrnOpLite
>
op
)
{
Scope
*
scope
=
op
->
scope
();
const
OpInfo
*
op_info
=
op
->
op_info
();
auto
x
=
scope
->
FindVar
(
op_info
->
Input
(
"X"
).
front
())
->
GetMutable
<
lite
::
Tensor
>
();
auto
out
=
scope
->
FindVar
(
op_info
->
Output
(
"Out"
).
front
())
->
GetMutable
<
lite
::
Tensor
>
();
const
float
*
x_data
=
x
->
data
<
const
float
>
();
float
*
out_data
=
out
->
mutable_data
<
float
>
();
auto
x_dims
=
x
->
dims
();
auto
alpha
=
op_info
->
GetAttr
<
float
>
(
"alpha"
);
auto
beta
=
op_info
->
GetAttr
<
float
>
(
"beta"
);
auto
k
=
op_info
->
GetAttr
<
float
>
(
"k"
);
auto
norm_region
=
op_info
->
GetAttr
<
std
::
string
>
(
"norm_region"
);
auto
local_size
=
op_info
->
GetAttr
<
int
>
(
"n"
);
int
N
=
x_dims
[
0
];
int
C
=
x_dims
[
1
];
int
H
=
x_dims
[
2
];
int
W
=
x_dims
[
3
];
int
offset_num
=
0
;
int
offset_within_channel
=
0
;
int
dst_id
;
float
square
;
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
offset_num
=
n
*
C
*
H
*
W
;
for
(
int
c
=
0
;
c
<
C
;
++
c
)
{
for
(
int
h
=
0
;
h
<
H
;
++
h
)
{
for
(
int
w
=
0
;
w
<
W
;
++
w
)
{
offset_within_channel
=
h
*
W
+
w
;
dst_id
=
offset_num
+
c
*
H
*
W
+
offset_within_channel
;
square
=
lrn_square
(
x_data
,
c
,
offset_within_channel
,
offset_num
,
C
,
H
,
W
,
local_size
);
out_data
[
dst_id
]
=
x_data
[
dst_id
]
*
pow
(
k
+
alpha
*
square
,
-
beta
);
}
}
}
}
}
void
test_lrn
(
float
alpha
,
float
beta
,
float
k
,
int
local_size
,
int
n
,
int
c
,
int
h
,
int
w
,
const
std
::
string
&
norm_region
)
{
Scope
scope
;
std
::
string
x_var_name
(
"X_test"
);
std
::
string
out_var_name
(
"Out_test"
);
std
::
string
out_ref_var_name
(
"Out_ref"
);
auto
*
x
=
scope
.
NewTensor
(
x_var_name
);
auto
*
out
=
scope
.
NewTensor
(
out_var_name
);
auto
*
out_ref
=
scope
.
NewTensor
(
out_ref_var_name
);
std
::
vector
<
int64_t
>
x_dim
{
n
,
c
,
h
,
w
};
x
->
Resize
(
x_dim
);
out
->
Resize
(
x_dim
);
out_ref
->
Resize
(
x_dim
);
auto
*
x_data
=
x
->
mutable_data
<
float
>
();
FillTensor
<
float
,
float
>
(
x
,
0.
f
,
1.
f
);
float
*
dmax
,
*
dmin
;
std
::
tie
(
dmin
,
dmax
)
=
std
::
minmax_element
(
x_data
,
x_data
+
x
->
data_size
()
-
1
);
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"lrn"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
opdesc
.
SetAttr
(
"alpha"
,
alpha
);
opdesc
.
SetAttr
(
"beta"
,
beta
);
opdesc
.
SetAttr
(
"k"
,
k
);
opdesc
.
SetAttr
(
"n"
,
local_size
);
opdesc
.
SetAttr
(
"norm_region"
,
norm_region
);
opdesc
.
SetAttr
<
float
>
(
"input_scale"
,
(
*
dmax
-
*
dmin
)
/
255.
f
);
auto
op
=
CreateOp
<
operators
::
LrnOpLite
>
(
opdesc
,
&
scope
);
// baseline
lrn_compute_ref
(
op
);
out_ref
->
CopyDataFrom
(
*
out
);
Tensor
input_x
;
input_x
.
Resize
(
x
->
dims
());
transpose
(
x
->
mutable_data
<
float
>
(),
input_x
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
x_dim
[
0
]),
static_cast
<
int
>
(
x_dim
[
1
]),
static_cast
<
int
>
(
x_dim
[
2
]),
static_cast
<
int
>
(
x_dim
[
3
])},
{
0
,
2
,
3
,
1
});
x
->
CopyDataFrom
(
input_x
);
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name
});
Tensor
output_trans
;
auto
os
=
out
->
dims
();
output_trans
.
Resize
(
os
);
transpose
(
out
->
mutable_data
<
float
>
(),
output_trans
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
os
[
0
]),
static_cast
<
int
>
(
os
[
2
]),
static_cast
<
int
>
(
os
[
3
]),
static_cast
<
int
>
(
os
[
1
])},
{
0
,
3
,
1
,
2
});
auto
output_data
=
output_trans
.
mutable_data
<
float
>
();
auto
*
output_ref_data
=
out_ref
->
mutable_data
<
float
>
();
for
(
size_t
i
=
0
;
i
<
out
->
data_size
();
i
++
)
{
EXPECT_NEAR
(
output_data
[
i
],
output_ref_data
[
i
],
1e-4
);
}
}
TEST
(
MLUBridges
,
lrn
)
{
int
local_size
=
5
;
float
alpha
=
0.0001
f
;
float
beta
=
0.75
;
float
k
=
2.0
f
;
std
::
string
norm_region
=
"AcrossChannels"
;
for
(
int
w
:
{
2
,
4
,
8
})
{
for
(
int
h
:
{
2
,
4
,
8
})
{
for
(
int
c
:
{
1
,
2
,
3
,
4
})
{
for
(
int
n
:
{
1
,
2
,
3
,
4
})
{
test_lrn
(
alpha
,
beta
,
k
,
local_size
,
n
,
c
,
h
,
w
,
norm_region
);
}
}
}
}
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
USE_SUBGRAPH_BRIDGE
(
lrn
,
kMLU
)
lite/kernels/mlu/bridges/norm_op.cc
0 → 100644
浏览文件 @
be7cc8f8
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
int
NormConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
scope
=
op
->
scope
();
VLOG
(
3
)
<<
"[MLU] Converting "
+
op_type
+
"..."
;
// Get input vars and op attributes
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
x
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
x_dims
=
x
->
dims
().
Vectorize
();
auto
out_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
output_dims
=
output
->
dims
().
Vectorize
();
int
axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
int
epsilon
=
op_info
->
GetAttr
<
float
>
(
"epsilon"
);
if
(
axis
<
0
)
{
axis
=
axis
+
x_dims
.
size
();
}
std
::
vector
<
int
>
nchw2nhwc
=
{
0
,
3
,
1
,
2
};
int
nhwc_axis
=
nchw2nhwc
[
axis
];
CHECK
(
graph
->
HasNode
(
x_var_name
));
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
// ======== DEBUG ===============
VLOG
(
6
)
<<
"x name="
<<
x_var_name
;
VLOG
(
6
)
<<
"out name="
<<
out_var_name
;
VLOG
(
6
)
<<
"x dims="
<<
x
->
dims
();
VLOG
(
6
)
<<
"out dims="
<<
output
->
dims
();
VLOG
(
6
)
<<
"axis ="
<<
axis
;
VLOG
(
6
)
<<
"nwhc axis="
<<
nhwc_axis
;
VLOG
(
6
)
<<
"epsilon ="
<<
epsilon
;
// cnmlPrintTensor(input_tensor->mlu_tensor(), CNML_TENSOR);
// cnmlPrintTensor(output_tensor->mlu_tensor(), CNML_TENSOR);
// ======== DEBUG END ============
cnmlBaseOp_t
norm_op
{
nullptr
};
cnmlNormalizeOpParam_t
param
;
int
mode
=
-
1
;
switch
(
axis
)
{
case
0
:
mode
=
3
;
// N
break
;
case
1
:
mode
=
0
;
// C
break
;
case
2
:
mode
=
4
;
// H
break
;
case
3
:
mode
=
5
;
// W
break
;
default:
CHECK
(
0
);
break
;
}
cnmlCreateNormalizeOpParamV2
(
&
param
,
0
,
// p
0
,
// use_scale
mode
,
1
,
// weight
epsilon
);
CNML_CALL
(
cnmlCreateNormalizeOp
(
&
norm_op
,
param
,
input_tensor
->
mlu_tensor
(),
output_tensor
->
mlu_tensor
(),
nullptr
,
false
/*is_fix8_mode*/
));
graph
->
FuseOp
(
norm_op
);
CNML_CALL
(
cnmlDestroyBaseOp
(
&
norm_op
));
return
SUCCESS
;
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
norm
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
NormConverter
);
lite/kernels/mlu/bridges/norm_op_test.cc
0 → 100644
浏览文件 @
be7cc8f8
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/norm_op.h"
#include <gtest/gtest.h>
#include <cmath>
#include <iostream>
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
// void ToFile(std::string file_name, Tensor* tensor) {
// int count = tensor->dims().production();
// auto data = tensor->mutable_data<float>();
// std::ostringstream outs;
// for (size_t i = 0; i < count; i++) {
// outs << data[i] << std::endl;
// }
// std::ofstream of;
// of.open(file_name, std::ios::out);
// of << outs.str();
// of.close();
// }
void
norm_ref
(
const
std
::
shared_ptr
<
operators
::
NormOp
>
op
)
{
Scope
*
scope
=
op
->
scope
();
const
OpInfo
*
op_info
=
op
->
op_info
();
auto
x
=
scope
->
FindVar
(
op_info
->
Input
(
"X"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
out
=
scope
->
FindVar
(
op_info
->
Output
(
"Out"
).
front
())
->
GetMutable
<
Tensor
>
();
int
axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
int
epsilon
=
op_info
->
GetAttr
<
float
>
(
"epsilon"
);
auto
x_dims
=
x
->
dims
();
if
(
axis
<
0
)
{
axis
+=
x_dims
.
size
();
}
out
->
Resize
(
x_dims
.
Vectorize
());
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
const
auto
*
x_data
=
x
->
data
<
float
>
();
int
pre_n
=
x_dims
.
count
(
0
,
axis
);
int
n
=
x_dims
[
axis
];
int
post_n
=
x_dims
.
count
(
axis
+
1
,
x_dims
.
size
());
for
(
int
i
=
0
;
i
<
pre_n
;
i
++
)
{
for
(
int
k
=
0
;
k
<
post_n
;
k
++
)
{
float
sum
=
epsilon
;
const
float
*
in_tmp
=
x_data
+
i
*
n
*
post_n
+
k
;
for
(
int
j
=
0
;
j
<
n
;
j
++
)
{
sum
+=
in_tmp
[
j
*
post_n
]
*
in_tmp
[
j
*
post_n
];
}
sum
=
std
::
sqrt
(
sum
);
float
*
out_tmp
=
out_data
+
i
*
n
*
post_n
+
k
;
for
(
int
j
=
0
;
j
<
n
;
j
++
)
{
out_tmp
[
j
*
post_n
]
=
in_tmp
[
j
*
post_n
]
/
sum
;
}
}
}
}
void
test_norm
(
const
std
::
vector
<
int64_t
>&
input_shape
,
int
axis
)
{
// prepare input&output variables
Scope
scope
;
std
::
string
x_var_name
=
"x"
;
std
::
string
out_var_name
=
"out"
;
std
::
string
out_ref_var_name
=
"out_ref"
;
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref
=
scope
.
Var
(
out_ref_var_name
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
(
input_shape
);
// initialize input&output data
FillTensor
<
float
,
float
>
(
x
,
-
9
,
9
);
// initialize op desc
cpp
::
OpDesc
opdesc
;
float
epsilon
=
1e-9
f
;
opdesc
.
SetType
(
"norm"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
opdesc
.
SetAttr
(
"axis"
,
static_cast
<
int
>
(
axis
));
opdesc
.
SetAttr
(
"epsilon"
,
static_cast
<
float
>
(
epsilon
));
// create and convert op to MLU model, then run it on MLU
auto
op
=
CreateOp
<
operators
::
NormOp
>
(
opdesc
,
&
scope
);
norm_ref
(
op
);
out_ref
->
CopyDataFrom
(
*
out
);
Tensor
input_x
;
input_x
.
Resize
(
DDim
(
input_shape
));
// change input layout from NCHW to NHWC
transpose
<
float
>
(
x
->
mutable_data
<
float
>
(),
input_x
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
input_shape
[
0
]),
static_cast
<
int
>
(
input_shape
[
1
]),
static_cast
<
int
>
(
input_shape
[
2
]),
static_cast
<
int
>
(
input_shape
[
3
])},
{
0
,
2
,
3
,
1
});
x
->
CopyDataFrom
(
input_x
);
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name
});
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
auto
*
out_ref_data
=
out_ref
->
mutable_data
<
float
>
();
std
::
vector
<
int64_t
>
out_shape
=
input_shape
;
Tensor
output_trans
;
output_trans
.
Resize
(
out_shape
);
// Change output layout from NHWC to NCHW
transpose
<
float
>
(
out_data
,
output_trans
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
out_shape
[
0
]),
static_cast
<
int
>
(
out_shape
[
2
]),
static_cast
<
int
>
(
out_shape
[
3
]),
static_cast
<
int
>
(
out_shape
[
1
])},
{
0
,
3
,
1
,
2
});
out_data
=
output_trans
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
out_data
[
i
],
out_ref_data
[
i
],
1e-2
);
}
}
TEST
(
MLUBridges
,
norm
)
{
test_norm
({
1
,
2
,
3
,
4
},
1
);
test_norm
({
1
,
2
,
3
,
4
},
2
);
test_norm
({
1
,
2
,
3
,
4
},
3
);
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
USE_SUBGRAPH_BRIDGE
(
norm
,
kMLU
);
lite/kernels/mlu/bridges/paddle_use_bridges.h
浏览文件 @
be7cc8f8
...
...
@@ -43,3 +43,8 @@ USE_SUBGRAPH_BRIDGE(flatten, kMLU);
USE_SUBGRAPH_BRIDGE
(
flatten2
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
reshape
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
reshape2
,
kMLU
);
#ifdef LITE_BUILD_EXTRA
USE_SUBGRAPH_BRIDGE
(
gather
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
lrn
,
kMLU
)
USE_SUBGRAPH_BRIDGE
(
norm
,
kMLU
)
#endif
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录