api.cpp 41.3 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15
#include "fpga/V1/api.h"
J
jameswu2014 已提交
16
#include <memory>
Z
zhangyang 已提交
17
#include "fpga/V1/bias_scale.h"
Z
zhangyang 已提交
18
#include "fpga/V1/deconv_filter.h"
Z
zhangyang 已提交
19 20
#include "fpga/V1/filter.h"
#include "fpga/V1/image.h"
Z
zhangyang 已提交
21

Z
zhangyang 已提交
22
namespace paddle_mobile {
H
hanbuhe 已提交
23 24
namespace fpga {

25 26 27
#define USE_RELU 1
#define USE_BIAS 2

Z
zhangyang 已提交
28 29
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
30
  auto channel = dims[1], height = dims[2], width = dims[3];
31
  auto data_ptr = image_tensor->data<float>();
32 33
  auto external_ptr = reinterpret_cast<float *>(image_tensor->external_data);
  float *p_data = external_ptr == nullptr ? data_ptr : external_ptr;
J
jameswu2014 已提交
34

35
  image::format_image(&p_data, channel, height, width);
J
jameswu2014 已提交
36
  if (p_data != data_ptr && external_ptr == nullptr) {
37 38
    image_tensor->reset_data_ptr(p_data);
  }
Z
zhangyang 已提交
39 40
}

Z
zhangyang0701 已提交
41 42 43 44 45 46 47
void format_ofm(framework::Tensor *ofm_tensor) {
  if (ofm_tensor->type() == typeid(float)) {
    format_fp32_ofm(ofm_tensor);
  } else {
    format_fp16_ofm(ofm_tensor);
  }
}
48
void format_fp16_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
49
  auto dims = ofm_tensor->dims();
50 51
  size_t memory_size = 0;
  if (dims.size() == 4) {
J
jameswu2014 已提交
52 53 54
    auto channel = dims[1], height = dims[2], width = dims[3], num = dims[0];
    memory_size = num * height * align_to_x(channel * width, IMAGE_ALIGNMENT) *
                  sizeof(half);
55 56 57 58 59 60 61 62
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
63
  ofm_tensor->set_type(typeid(half));
64
  ofm_tensor->fpga_data_num = memory_size / sizeof(half);
65 66
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
void format_fp16_ofm(framework::Tensor *ofm_tensor, framework::DDim dims) {
  // auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
82
  ofm_tensor->set_type(typeid(half));
83
  ofm_tensor->fpga_data_num = memory_size / sizeof(half);
84
}
85

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
void format_fp32_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
101
  ofm_tensor->set_type(typeid(float));
102
  ofm_tensor->fpga_data_num = memory_size / sizeof(float);
Z
zhangyang 已提交
103 104
}

Z
zhangyang 已提交
105 106 107 108
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
109 110 111

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
112 113
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
114 115 116
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
Z
zhangyang 已提交
117 118 119 120 121 122 123
int get_deconv_plit_num(framework::Tensor *filter_tensor, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
Z
zhangyang 已提交
124

125
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
126
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
127 128
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
129 130 131 132
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
133 134 135 136 137 138 139 140 141
int get_deconv_filter_num_per_div(framework::Tensor *filter_tensor,
                                  int group_num, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
142 143 144 145
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

Z
zhangyang 已提交
146 147
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
148 149
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
Z
zhangyang 已提交
150
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
151
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
152
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
153
  size_t memory_size = num * channel * height * width * sizeof(float);
154
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
155 156 157 158
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
159
  filter_tensor->set_type(typeid(int8_t));
Z
zhangyang 已提交
160
}
161 162 163 164 165 166 167 168 169
void format_dwconv_filter(framework::Tensor *filter_tensor, float *scale_ptr) {
  auto dims = filter_tensor->dims();
  auto num = dims[0], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_dwconv_filter(&new_data, num, height, width, scale_ptr);
  filter_tensor->reset_data_ptr(new_data);
qnqinan's avatar
update  
qnqinan 已提交
170
  filter_tensor->set_type(typeid(int16_t));
171
}
Z
zhangyang 已提交
172

qnqinan's avatar
qnqinan 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
void format_DWDconv_filter(framework::Tensor *filter_tensor, float *scale_ptr,
                           int stride) {
  auto dims = filter_tensor->dims();
  auto num = dims[0], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, 1, hw);

  num = dims[1];
  int channel = dims[0];

  deconv_filter::DWDconv_format_filter(&new_data, num, channel, height, width,
                                       scale_ptr, stride);

  //  framework::DDim dims_new =
  //      framework::make_ddim({num, 1, height, width});
  //  filter_tensor->Resize(dims_new);
  filter_tensor->reset_data_ptr(new_data);
195
  filter_tensor->set_type(typeid(int8_t));
qnqinan's avatar
qnqinan 已提交
196 197
}

Z
zhangyang 已提交
198 199 200 201 202 203 204 205 206 207 208 209
void format_fc_filter(framework::Tensor *filter_tensor, float max_value) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_fc_filter(&new_data, num, channel, height, width, 1,
                           max_value);
  filter_tensor->reset_data_ptr(new_data);
210
  filter_tensor->set_type(typeid(int8_t));
Z
zhangyang 已提交
211
}
Z
zhangyang 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
void format_deconv_filter(framework::Tensor *filter_tensor, float max_value,
                          int group_num, int stride) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, data_ptr, memory_size);

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, channel, hw);

  num = dims[1];
  channel = dims[0];
  deconv_filter::deconv_format_filter(
      &new_data, (int)num, (int)channel,          // NOLINT
      (int)height,                                // NOLINT
      (int)width, group_num, max_value, stride);  // NOLINT

  framework::DDim dims_new =
      framework::make_ddim({num, channel, height, width});
  filter_tensor->Resize(dims_new);
  filter_tensor->reset_data_ptr(new_data);
237
  filter_tensor->set_type(typeid(int8_t));
Z
zhangyang 已提交
238
}
Z
zhangyang 已提交
239

Z
zhangyang 已提交
240 241 242 243 244
void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}
245 246 247
void format_bias_array(float **bias_array, int num) {
  bias_scale::format_bias_array(bias_array, num);
}
Z
zhangyang 已提交
248

Z
zhangyang 已提交
249 250 251 252 253 254 255 256 257
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
258
  auto ddim = framework::make_ddim({1, sum_channel, height, width});
Z
zhangyang 已提交
259 260
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
261
  out->set_type(typeid(half));
Z
zhangyang 已提交
262
}
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
void format_conv_data(framework::Tensor *filter_tensor,
                      framework::Tensor *ofm_tensor, float **bs_ptr,
                      int group) {
  float max_value = fpga::filter_find_max(filter_tensor);
  fpga::format_filter(filter_tensor, max_value, group);
  int element_num_per_div = fpga::get_filter_num_per_div(filter_tensor, group);
  fpga::format_bias_scale_array(bs_ptr, element_num_per_div,
                                ofm_tensor->dims()[1]);
  fpga::format_fp16_ofm(ofm_tensor);
}
void format_deconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float **bs_ptr,
                        int group, int sub_conv_n) {
  int channel = ofm_tensor->dims()[1];
  float max_value = filter_find_max(filter_tensor);
  format_deconv_filter(filter_tensor, max_value, group, sub_conv_n);
  int element_num_per_div =
      get_deconv_filter_num_per_div(filter_tensor, group, sub_conv_n);
  format_bias_scale_array(bs_ptr, element_num_per_div, channel * sub_conv_n);
  format_fp16_ofm(ofm_tensor);
}
Z
zhangyang 已提交
284

285 286 287 288 289 290 291 292
void format_dwconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float *scale_ptr,
                        float **bias_ptr) {
  auto channel = ofm_tensor->dims()[1];
  format_dwconv_filter(filter_tensor, scale_ptr);
  format_bias_array(bias_ptr, channel);
  format_fp16_ofm(ofm_tensor);
}
qnqinan's avatar
qnqinan 已提交
293 294 295 296 297 298 299 300 301 302 303
void format_DWDeconv_data(framework::Tensor *filter_tensor,
                          framework::Tensor *ofm_tensor, float **bs_ptr,
                          int group, int sub_conv_n) {
  int channel = ofm_tensor->dims()[1];
  // dw-deconv
  format_DWDconv_filter(
      filter_tensor,
      (reinterpret_cast<float *>(*bs_ptr) + sub_conv_n * channel), sub_conv_n);
  format_bias_array(bs_ptr, channel);
  format_fp16_ofm(ofm_tensor);
}
304 305
void expand_conv_arg(ConvArgs *arg) {
  ConvArgs args = *arg;
306 307

  auto fpga_bias_scale_len =
308 309
      align_to_x(args.filter_num / args.group_num, 8) * args.group_num;

310
  auto output_height =
311 312 313
      (args.image.height + args.image.pad_height * 2 - args.kernel.height) /
          args.kernel.stride_h +
      1;
314
  auto output_width =
315 316 317
      (args.image.width + args.image.pad_width * 2 - args.kernel.width) /
          args.kernel.stride_w +
      1;
318 319 320 321 322 323 324 325 326 327

  auto filter_per_group = args.filter_num / args.group_num;
  auto channel_per_group = args.image.channels / args.group_num;

  auto image_row_count = args.image.width * args.image.channels;
  auto image_amount_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT);
  auto image_one_pad_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT) +
                               args.image.pad_width * args.image.channels;
  auto filter_amount_all =
      align_to_x(args.kernel.height * args.kernel.width * channel_per_group,
328 329
                 FILTER_ELEMENT_ALIGNMENT);

330 331 332
  auto output_amount_per_row = align_to_x(
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num,
      IMAGE_ALIGNMENT);
333 334 335 336

  // find the opt partition strategy
  uint64_t res_win;
  uint64_t res_fit = 0;
337
  for (res_win = 1; res_win <= output_width; res_win++) {
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    if ((align_to_x(
             (args.image.channels *
              (args.kernel.width + (res_win - 1) * args.kernel.stride_w)),
             IMAGE_ALIGNMENT) /
             16 +
         1) *
            args.kernel.height >
        2048) {
      break;
    }
  }

  if (res_win != output_width) {
    res_win -= 1;
  }

  if (((res_win % 2) != 0) && (res_win != 1)) {
    res_win = res_win - 1;
  }
  res_fit = res_win;

359 360 361
  auto block_num = (output_width + res_fit - 1) / res_fit;
  auto block_len = res_fit;
  auto block_last = output_width - res_fit * (block_num - 1);
362

363 364
  auto res_amount_per_row =
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num;
365
  auto res_amount_per_row_pad = output_amount_per_row - res_amount_per_row;
366

367 368 369
  auto image_block_amount_per_row =
      args.kernel.stride_w * res_fit * args.image.channels;
  auto filter_pad_width_mul_channel =
370
      args.image.pad_width * args.image.channels;
371
  auto image_amount_per_row_multi_win_first =
J
jameswu2014 已提交
372 373
      image_amount_per_row *
      (ROW_PARALLEL_NUM * args.kernel.stride_h - args.image.pad_height);
374
  auto image_amount_per_row_multi_win =
375
      image_amount_per_row * (ROW_PARALLEL_NUM * args.kernel.stride_h);
376

377 378
  auto image_block_num = block_num;
  auto image_block_len =
379 380 381 382 383
      align_to_x((args.image.channels *
                  (args.kernel.width + (block_len - 1) * args.kernel.stride_w)),
                 IMAGE_ALIGNMENT) /
          16 +
      1;
384
  auto image_block_len_last =
385 386 387 388 389 390
      align_to_x(
          (args.image.channels *
           (args.kernel.width + (block_last - 1) * args.kernel.stride_w)),
          IMAGE_ALIGNMENT) /
          16 +
      1;
391 392 393
  auto image_win_cnt = block_len;
  auto image_win_cnt_last = block_last;
  auto res_row_data_align4_pad = res_amount_per_row_pad / 8;
394 395
  auto prog_full_cnt = 1024 / (filter_amount_all / 16 * 2) - 1;
  if (prog_full_cnt == 511) {
396 397
    prog_full_cnt--;
  }
398
  auto post_prog_full_cnt =
399 400 401
      (512 / (align_to_x(args.filter_num, 4) / 4 * 2) > 2)
          ? (512 / (align_to_x(args.filter_num, 4) / 4 * 2) - 2)
          : 0;
qnqinan's avatar
qnqinan 已提交
402 403
  // auto cmd = 0UL | (args.relu_enabled ? USE_RELU : 0) | USE_BIAS;
  auto cmd = 0UL | USE_BIAS;
404

qnqinan's avatar
update  
qnqinan 已提交
405 406
  auto deconv_param = ((args.deconv_tx_param.deconv_en) << 16) |
                      ((args.deconv_tx_param.sub_conv_num) << 8) |
407
                      ((args.deconv_tx_param.omit_size) << 0);
408 409 410
  (*arg).driver.image_address_phy = vaddr_to_paddr(args.image.address);
  (*arg).driver.sb_address_phy = vaddr_to_paddr(args.sb_address);
  (*arg).driver.filter_address_phy = vaddr_to_paddr(args.filter_address);
411 412
  (*arg).driver.output_address_phy = vaddr_to_paddr(args.output.address) +
                                     args.deconv_tx_param.out_addr_offset;
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
  (*arg).driver.output_height = output_height;
  (*arg).driver.output_width = output_width;
  (*arg).driver.filter_per_group = filter_per_group;
  (*arg).driver.channel_per_group = channel_per_group;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.image_one_pad_per_row = image_one_pad_per_row;
  (*arg).driver.filter_amount_all = filter_amount_all;
  (*arg).driver.output_amount_per_row = output_amount_per_row;
  (*arg).driver.image_block_amount_per_row = image_block_amount_per_row;
  (*arg).driver.filter_pad_width_mul_channel = filter_pad_width_mul_channel;
  (*arg).driver.image_amount_per_row_multi_win_first =
      image_amount_per_row_multi_win_first;
  (*arg).driver.image_amount_per_row_multi_win = image_amount_per_row_multi_win;
  (*arg).driver.image_block_num = image_block_num;
  (*arg).driver.image_block_len = image_block_len;
  (*arg).driver.image_block_len_last = image_block_len_last;
  (*arg).driver.image_win_cnt = image_win_cnt;
  (*arg).driver.image_win_cnt_last = image_win_cnt_last;
  (*arg).driver.res_row_data_align4_pad = res_row_data_align4_pad;
  (*arg).driver.prog_full_cnt = prog_full_cnt;
  (*arg).driver.post_prog_full_cnt = post_prog_full_cnt;
  (*arg).driver.fpga_bias_scale_len = fpga_bias_scale_len;
  (*arg).driver.cmd = cmd;
436
  (*arg).driver.deconv_param = deconv_param;
437 438 439 440
}  // expand_conv_arg()

void expand_EW_arg(EWAddArgs *arg) {
  EWAddArgs args = *arg;
qnqinan's avatar
qnqinan 已提交
441 442
  // uint64_t cmd = args.relu_enabled ? USE_RELU : 0;
  uint64_t cmd = 0;
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
  uint64_t datalen = (uint64_t)args.image0.width *
                     (uint64_t)args.image0.height *
                     (uint64_t)args.image0.channels;
  uint64_t coefficient = (uint64_t)args.const0 << 32 | (uint64_t)args.const1;
  uint64_t image0_address_phy = vaddr_to_paddr(args.image0.address);
  uint64_t image1_address_phy = vaddr_to_paddr(args.image1.address);
  uint64_t output_address_phy = vaddr_to_paddr(args.output.address);

  uint64_t image_amount_per_row =
      align_to_x((uint64_t)args.image0.width * (uint64_t)args.image0.channels,
                 IMAGE_ALIGNMENT);
  uint64_t image_image_pixel = ((uint64_t)args.image0.channels << 32) |
                               ((uint64_t)args.image0.width << 16) |
                               (uint64_t)args.image0.height;

  (*arg).driver.image0_address_phy = image0_address_phy;
  (*arg).driver.image1_address_phy = image1_address_phy;
  (*arg).driver.datalen = datalen;
  (*arg).driver.image_image_pixel = image_image_pixel;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.output_address_phy = output_address_phy;
  (*arg).driver.coefficient = coefficient;
  (*arg).driver.cmd = cmd;
}  // expand_EW_arg

Z
zhangyang 已提交
468 469
void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
                    framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
470 471 472 473
                    ActivationType activation_enable,
                    int16_t leaky_relu_negative_slope, int group_num,
                    int stride_h, int stride_w, int padding_h, int padding_w,
                    float *bs_ptr) {
474 475 476
  auto input_ptr = input->data<half>();
  auto filter_ptr = filter->data<int8_t>();
  auto out_ptr = out->data<half>();
Z
zhangyang 已提交
477
  auto deleter = [](void *p) { fpga_free(p); };
478 479

  arg->group_num = (uint32_t)group_num;
480 481
  // Either group_num or split_num = 1;
  arg->split_num = group_num == 1 ? (uint32_t)get_plit_num(filter) : 1;
482 483 484
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
Z
zhangyang 已提交
485
  arg->conv_arg =
486
      (ConvArgs *)fpga_malloc(arg->split_num * sizeof(ConvArgs));  // NOLINT
487

Z
zhangyang 已提交
488 489
  arg->shared_conv_arg = std::shared_ptr<ConvArgs>(arg->conv_arg, deleter);

490 491
  memset(arg->conv_arg, 0, arg->split_num * sizeof(struct ConvArgs));

492 493 494
  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
495 496
  arg->concat_arg.height = (uint32_t)out->dims()[2];
  arg->concat_arg.width = (uint32_t)out->dims()[3];
497 498

  int n = arg->split_num;
499
  arg->concat_arg.images_in =
Z
zhangyang 已提交
500
      static_cast<int16_t **>(fpga_malloc(n * sizeof(int *)));
501
  arg->concat_arg.scales_in =
Z
zhangyang 已提交
502
      static_cast<float **>(fpga_malloc(n * sizeof(float *)));
503
  arg->concat_arg.channel_num =
Z
zhangyang 已提交
504 505 506 507 508 509 510
      static_cast<uint32_t *>(fpga_malloc(n * sizeof(uint32_t)));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.images_in), deleter));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.scales_in), deleter));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.channel_num), deleter));
511

512 513 514
  auto channel = (int)out->dims()[1];  // NOLINT
  int filter_num_per_div = get_filter_num_per_div(filter, group_num);
  int element_num = get_aligned_filter_element_num(
515 516
      (int)(filter->dims()[1] * filter->dims()[2] *  // NOLINT
            filter->dims()[3]));
517 518

  for (int i = 0; i < n; i++) {
qnqinan's avatar
qnqinan 已提交
519 520 521 522
    // arg->conv_arg[i].relu_enabled = relu_enabled;
    arg->conv_arg[i].output.activation.activation_type = activation_enable;
    arg->conv_arg[i].output.activation.leaky_relu_negative_slope =
        leaky_relu_negative_slope;
Z
zhangyang 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536
    arg->conv_arg[i].group_num = (uint32_t)group_num;
    arg->conv_arg[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_arg[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_arg[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_arg[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_arg[i].image.address = input_ptr;
    arg->conv_arg[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_arg[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_arg[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_arg[i].image.scale_address = input->scale;
    arg->conv_arg[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_arg[i].image.pad_width = (uint32_t)padding_w;
    arg->conv_arg[i].filter_scale_address = filter->scale;
    arg->conv_arg[i].filter_num = (uint32_t)(
537 538
        i == n - 1 ? channel - (n - 1) * filter_num_per_div  // NOLINT
                   : filter_num_per_div);
539

Z
zhangyang 已提交
540
    size_t filter_size =
541 542 543
        element_num *
        align_to_x(arg->conv_arg[i].filter_num, FILTER_NUM_ALIGNMENT) *
        sizeof(int8_t);
544 545
    auto filter_head = &(
        (int8_t *)filter_ptr)[i * element_num * filter_num_per_div];  // NOLINT
Z
zhangyang 已提交
546
    arg->conv_arg[i].filter_address = fpga_malloc(filter_size);
Z
zhangyang 已提交
547 548
    arg->vector_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->conv_arg[i].filter_address), deleter));
Z
zhangyang 已提交
549 550 551
    memcpy(arg->conv_arg[i].filter_address, filter_head, filter_size);
    fpga_flush(arg->conv_arg[i].filter_address, filter_size);

552 553 554
    size_t bs_size = 2 *
                     align_to_x(arg->conv_arg[i].filter_num, BS_NUM_ALIGNMENT) *
                     sizeof(float);
Z
zhangyang 已提交
555 556
    auto bs_head = &bs_ptr[i * filter_num_per_div * 2];
    arg->conv_arg[i].sb_address = fpga_malloc(bs_size);
Z
zhangyang 已提交
557 558
    arg->vector_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->conv_arg[i].sb_address), deleter));
Z
zhangyang 已提交
559 560 561
    memcpy(arg->conv_arg[i].sb_address, bs_head, bs_size);
    fpga_flush(arg->conv_arg[i].sb_address, bs_size);

562
    if (n > 1) {
Z
zhangyang 已提交
563
      arg->conv_arg[i].output.scale_address =
Z
zhangyang 已提交
564
          static_cast<float *>(fpga_malloc(2 * sizeof(float)));
565 566 567 568 569 570
      arg->conv_arg[i].output.address =
          fpga_malloc(out->dims()[2] *
                      align_to_x((int)(out->dims()[3] *  // NOLINT
                                       arg->conv_arg[i].filter_num),
                                 IMAGE_ALIGNMENT) *
                      sizeof(half));
Z
zhangyang 已提交
571 572 573 574 575
      arg->vector_conv_space.push_back(std::shared_ptr<char>(
          reinterpret_cast<char *>(arg->conv_arg[i].output.scale_address),
          deleter));
      arg->vector_conv_space.push_back(std::shared_ptr<char>(
          reinterpret_cast<char *>(arg->conv_arg[i].output.address), deleter));
576
    } else {
Z
zhangyang 已提交
577 578
      arg->conv_arg[i].output.scale_address = out->scale;
      arg->conv_arg[i].output.address = out_ptr;
579 580
    }

581
    arg->concat_arg.images_in[i] =
Z
zhangyang 已提交
582 583 584
        (half *)arg->conv_arg[i].output.address;  // NOLINT
    arg->concat_arg.scales_in[i] = arg->conv_arg[i].output.scale_address;
    arg->concat_arg.channel_num[i] = arg->conv_arg[i].filter_num;
585 586

    expand_conv_arg(&arg->conv_arg[i]);
587
  }
Z
zhangyang 已提交
588 589
  filter->reset_data_ptr(nullptr);
  fpga_free(bs_ptr);
590 591
}  // fill_split_arg

Z
zhangyang 已提交
592 593
void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
594 595 596
                     ActivationType activation_enable,
                     int16_t leaky_relu_negative_slope, int group_num,
                     int stride_h, int stride_w, int padding_h, int padding_w,
Z
zhangyang 已提交
597
                     float *bs_ptr) {
598 599
  auto input_ptr = input->data<half>();
  auto filter_ptr = filter->data<int8_t>();
Z
zhangyang 已提交
600
  auto deleter = [](void *p) { fpga_free(p); };
Z
zhangyang 已提交
601 602

  arg->group_num = (uint32_t)group_num;
603
  arg->sub_conv_num = (uint32_t)stride_h;
Z
zhangyang 已提交
604
  arg->filter_num = (uint32_t)filter->dims()[0];
605
  uint32_t sub_conv_num = arg->sub_conv_num;
606 607 608
  int sub_pad =
      deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],  // NOLINT
                                         padding_w, stride_w);
609
  auto sub_filter_width = (uint32_t)deconv_filter::deconv_get_sub_filter_axis(
610
      (int)filter->dims()[3], stride_w);  // NOLINT
611

612
  auto sub_output_width = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
613
      (int)input->dims()[3], sub_pad, sub_filter_width);  // NOLINT
614
  auto sub_output_height = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
615
      (int)input->dims()[2], sub_pad, sub_filter_width);  // NOLINT
Z
zhangyang 已提交
616

617 618 619
  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
620
      stride_w, (int)filter->dims()[3], padding_w);  // NOLINT
Z
zhangyang 已提交
621

622
  auto sub_channels = (int)input->dims()[1];  // NOLINT
623
  uint32_t omit_size = arg->omit_size;
Z
zhangyang 已提交
624
  int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
Z
zhangyang 已提交
625 626
  int sub_filter_num = sub_conv_num * (arg->filter_num);

627 628 629
  framework::DDim dims_out_new = framework::make_ddim(
      {1, arg->filter_num, sub_output_height * sub_conv_num, real_out_width});
  fpga::format_fp16_ofm(out, dims_out_new);
630
  auto out_ptr = out->data<half>();
631
  arg->output.address =
qnqinan's avatar
update  
qnqinan 已提交
632
      (half *)out_ptr +  // NOLINT
633 634 635 636 637
      omit_size * sizeof(half) *
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));
  arg->output.scale_address = out->scale;

  uint32_t conv_output_size =
Z
zhangyang 已提交
638 639
      (align_to_x(sub_output_width * sub_filter_num, IMAGE_ALIGNMENT)) *
      sub_output_height;
640
  uint32_t split_num =
Z
zhangyang 已提交
641 642
      group_num == 1 ? (uint32_t)get_deconv_plit_num(filter, sub_conv_num) : 1;

Z
zhangyang 已提交
643
  for (int i = 0; i < sub_conv_num; ++i) {
Z
zhangyang 已提交
644 645
    arg->split_conv_args.push_back(std::make_shared<SplitConvArgs>());
    arg->split_conv_args[i]->filter_num =
Z
zhangyang 已提交
646
        (arg->sub_conv_num) * (arg->filter_num);
Z
zhangyang 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
    arg->split_conv_args[i]->group_num = (uint32_t)group_num;
    arg->split_conv_args[i]->split_num = split_num;
    arg->split_conv_args[i]->concat_arg.height = sub_output_height;
    arg->split_conv_args[i]->concat_arg.width = sub_output_width;
    arg->split_conv_args[i]->concat_arg.image_num = split_num;

    arg->split_conv_args[i]->conv_arg =
        static_cast<ConvArgs *>(fpga_malloc(split_num * sizeof(ConvArgs)));
    arg->split_conv_args[i]->concat_arg.images_in =
        static_cast<int16_t **>(fpga_malloc(split_num * sizeof(int16_t *)));
    arg->split_conv_args[i]->concat_arg.scales_in =
        static_cast<float **>(fpga_malloc(split_num * sizeof(float *)));
    arg->split_conv_args[i]->concat_arg.channel_num =
        static_cast<uint32_t *>(fpga_malloc(split_num * sizeof(uint32_t)));
    arg->split_conv_args[i]->shared_conv_arg =
        std::shared_ptr<ConvArgs>(arg->split_conv_args[i]->conv_arg, deleter);
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.images_in),
            deleter));
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.scales_in),
            deleter));
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.channel_num),
            deleter));
Z
zhangyang 已提交
678
  }
Z
zhangyang 已提交
679

680 681
  auto filter_num_per_div =
      (uint32_t)get_deconv_filter_num_per_div(filter, group_num, stride_w);
Z
zhangyang 已提交
682
  int element_num = get_aligned_filter_element_num(
683
      (int)(sub_channels * sub_filter_width * sub_filter_width));  // NOLINT
Z
zhangyang 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

  int chw = sub_channels * sub_filter_width * sub_filter_width;
  int division_capacity = filter::calc_division_capacity(chw);
  int num_per_div_before_alignment =
      filter::calc_num_per_div(sub_filter_num, group_num, division_capacity);
  int num_per_div_after_alignment =
      align_to_x(num_per_div_before_alignment, FILTER_NUM_ALIGNMENT);
  int div_num = (sub_filter_num + num_per_div_before_alignment - 1) /
                num_per_div_before_alignment;
  int residual = sub_filter_num % num_per_div_before_alignment;
  int num_after_alignment = num_per_div_after_alignment *
                                ((residual == 0) ? div_num : (div_num - 1)) +
                            align_to_x(residual, FILTER_NUM_ALIGNMENT);

  int filter_sub_conv_offset = element_num * num_after_alignment;
699
  uint32_t out_addr_offset = 0;
Z
zhangyang 已提交
700
  for (int i = 0; i < sub_conv_num; ++i) {
Z
zhangyang 已提交
701
    if (sub_conv_num == 1) {
Z
zhangyang 已提交
702 703
      arg->split_conv_args[i]->output.address = arg->output.address;
      arg->split_conv_args[i]->output.scale_address = arg->output.scale_address;
704
      out_addr_offset = 0;
Z
zhangyang 已提交
705

Z
zhangyang 已提交
706
    } else {
707
      out_addr_offset =
Z
zhangyang 已提交
708
          sizeof(int16_t) * (sub_conv_num - 1 - i) *
709 710
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));

Z
zhangyang 已提交
711 712 713 714 715 716 717 718
      arg->split_conv_args[i]->output.address = out_ptr;
      arg->split_conv_args[i]->output.scale_address =
          static_cast<float *>(fpga_malloc(2 * sizeof(float)));
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->output.scale_address),
              deleter));
Z
zhangyang 已提交
719 720
    }

Z
zhangyang 已提交
721
    for (int j = 0; j < split_num; ++j) {
qnqinan's avatar
qnqinan 已提交
722 723 724 725 726 727
      arg->split_conv_args[i]->conv_arg[j].output.activation.activation_type =
          activation_enable;
      arg->split_conv_args[i]
          ->conv_arg[j]
          .output.activation.leaky_relu_negative_slope =
          leaky_relu_negative_slope;
Z
zhangyang 已提交
728
      arg->split_conv_args[i]->conv_arg[j].group_num = (uint32_t)group_num;
Z
zhangyang 已提交
729

Z
zhangyang 已提交
730
      arg->split_conv_args[i]->conv_arg[j].kernel.width =
Z
zhangyang 已提交
731
          (uint32_t)sub_filter_width;
Z
zhangyang 已提交
732
      arg->split_conv_args[i]->conv_arg[j].kernel.height =
Z
zhangyang 已提交
733
          (uint32_t)sub_filter_width;
Z
zhangyang 已提交
734 735
      arg->split_conv_args[i]->conv_arg[j].kernel.stride_w = 1;
      arg->split_conv_args[i]->conv_arg[j].kernel.stride_h = 1;
Z
zhangyang 已提交
736

Z
zhangyang 已提交
737 738
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.deconv_en = 1;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.sub_conv_num =
739
          sub_conv_num;
Z
zhangyang 已提交
740 741 742
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.omit_size =
          omit_size;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.out_addr_offset =
743 744
          out_addr_offset;

Z
zhangyang 已提交
745 746
      arg->split_conv_args[i]->conv_arg[j].image.scale_address = input->scale;
      arg->split_conv_args[i]->conv_arg[j].image.channels =
Z
zhangyang 已提交
747
          (uint32_t)sub_channels;
Z
zhangyang 已提交
748
      arg->split_conv_args[i]->conv_arg[j].image.width =
Z
zhangyang 已提交
749
          (uint32_t)input->dims()[3];
Z
zhangyang 已提交
750
      arg->split_conv_args[i]->conv_arg[j].image.height =
Z
zhangyang 已提交
751
          (uint32_t)input->dims()[2];
Z
zhangyang 已提交
752 753 754
      arg->split_conv_args[i]->conv_arg[j].image.pad_width = (uint32_t)sub_pad;
      arg->split_conv_args[i]->conv_arg[j].image.pad_height = (uint32_t)sub_pad;
      arg->split_conv_args[i]->conv_arg[j].image.address = input_ptr;
Z
zhangyang 已提交
755

Z
zhangyang 已提交
756 757
      arg->split_conv_args[i]->conv_arg[j].filter_scale_address = filter->scale;
      arg->split_conv_args[i]->conv_arg[j].filter_num =
758 759 760
          (uint32_t)(j == split_num - 1
                         ? sub_filter_num - (split_num - 1) * filter_num_per_div
                         : filter_num_per_div);
Z
zhangyang 已提交
761 762 763

      size_t filter_size =
          element_num *
Z
zhangyang 已提交
764
          align_to_x(arg->split_conv_args[i]->conv_arg[j].filter_num,
Z
zhangyang 已提交
765 766
                     FILTER_NUM_ALIGNMENT) *
          sizeof(int8_t);
qnqinan's avatar
update  
qnqinan 已提交
767 768 769
      auto filter_head = &((
          int8_t *)filter_ptr)[j * element_num * filter_num_per_div +  // NOLINT
                               i * filter_sub_conv_offset];
Z
zhangyang 已提交
770
      arg->split_conv_args[i]->conv_arg[j].filter_address =
Z
zhangyang 已提交
771
          fpga_malloc(filter_size);
Z
zhangyang 已提交
772 773 774 775 776 777 778
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->conv_arg[j].filter_address),
              deleter));

      memcpy(arg->split_conv_args[i]->conv_arg[j].filter_address, filter_head,
Z
zhangyang 已提交
779
             filter_size);
Z
zhangyang 已提交
780
      fpga_flush(arg->split_conv_args[i]->conv_arg[j].filter_address,
Z
zhangyang 已提交
781 782 783
                 filter_size);

      size_t bs_align_num = align_to_x(
Z
zhangyang 已提交
784
          arg->split_conv_args[i]->conv_arg[j].filter_num, BS_NUM_ALIGNMENT);
Z
zhangyang 已提交
785 786 787
      size_t bs_size = 2 * bs_align_num * sizeof(float);
      auto bs_head = &bs_ptr[j * filter_num_per_div * 2];

Z
zhangyang 已提交
788 789 790 791 792 793 794 795 796
      arg->split_conv_args[i]->conv_arg[j].sb_address = fpga_malloc(bs_size);
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->conv_arg[j].sb_address),
              deleter));

      memcpy(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_head, bs_size);
      fpga_flush(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_size);
Z
zhangyang 已提交
797 798

      if (split_num == 1) {
Z
zhangyang 已提交
799 800 801 802
        arg->split_conv_args[i]->conv_arg[j].output.address =
            arg->split_conv_args[i]->output.address;
        arg->split_conv_args[i]->conv_arg[j].output.scale_address =
            arg->split_conv_args[i]->output.scale_address;
Z
zhangyang 已提交
803
      } else {
Z
zhangyang 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817
        arg->split_conv_args[i]->conv_arg[j].output.address =
            fpga_malloc(conv_output_size * sizeof(int16_t));
        arg->split_conv_args[i]->conv_arg[j].output.scale_address =
            static_cast<float *>(fpga_malloc(2 * sizeof(float)));
        arg->split_conv_args[i]->vector_conv_space.push_back(
            std::shared_ptr<char>(
                reinterpret_cast<char *>(
                    arg->split_conv_args[i]->conv_arg[j].output.address),
                deleter));
        arg->split_conv_args[i]->vector_conv_space.push_back(
            std::shared_ptr<char>(
                reinterpret_cast<char *>(
                    arg->split_conv_args[i]->conv_arg[j].output.scale_address),
                deleter));
Z
zhangyang 已提交
818
      }
819
      arg->split_conv_args[i]->concat_arg.images_in[j] = static_cast<half *>(
Z
zhangyang 已提交
820 821 822 823 824 825 826
          arg->split_conv_args[i]->conv_arg[j].output.address);
      arg->split_conv_args[i]->concat_arg.scales_in[j] =
          arg->split_conv_args[i]->conv_arg[j].output.scale_address;
      arg->split_conv_args[i]->concat_arg.channel_num[j] =
          arg->split_conv_args[i]->conv_arg[j].filter_num;

      expand_conv_arg(&(arg->split_conv_args[i]->conv_arg[j]));
Z
zhangyang 已提交
827 828
    }

Z
zhangyang 已提交
829 830 831 832
    arg->split_conv_args[i]->concat_arg.image_out =
        arg->split_conv_args[i]->output.address;
    arg->split_conv_args[i]->concat_arg.scale_out =
        arg->split_conv_args[i]->output.scale_address;
Z
zhangyang 已提交
833
  }
834
  filter->reset_data_ptr(nullptr);
Z
zhangyang 已提交
835
  fpga_free(bs_ptr);
836 837
}  // fill_deconv_arg

838 839
void fill_dwconv_arg(struct DWconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
840 841 842 843
                     ActivationType activation_enable,
                     int16_t leaky_relu_negative_slope, int stride_h,
                     int stride_w, int padding_h, int padding_w,
                     float *bias_ptr) {
J
jameswu2014 已提交
844 845 846 847
  auto deleter = [](void *p) { fpga_free(p); };
  arg->vector_dwconv_space.push_back(
      std::shared_ptr<char>(reinterpret_cast<char *>(bias_ptr), deleter));

qnqinan's avatar
update  
qnqinan 已提交
848
  auto filter_ptr = filter->data<int16_t>();
849
  auto input_ptr = input->data<half>();
J
jameswu2014 已提交
850
  auto output_ptr = out->mutable_data<half>();
851
  arg->sub_conv_num = 1;
qnqinan's avatar
qnqinan 已提交
852 853 854
  // arg->relu_enabled = relu_enabled;
  arg->output.activation.activation_type = activation_enable;
  arg->output.activation.leaky_relu_negative_slope = leaky_relu_negative_slope;
855 856
  arg->bias_address = bias_ptr;
  arg->filter_address = filter_ptr;
Z
zhangyang 已提交
857 858 859 860
  arg->kernel.height = (uint32_t)filter->dims()[2];
  arg->kernel.width = (uint32_t)filter->dims()[3];
  arg->kernel.stride_h = (uint32_t)stride_h;
  arg->kernel.stride_w = (uint32_t)stride_w;
861 862 863 864
  arg->image.address = input_ptr;
  arg->image.channels = (uint32_t)input->dims()[1];
  arg->image.height = (uint32_t)input->dims()[2];
  arg->image.width = (uint32_t)input->dims()[3];
Z
zhangyang 已提交
865 866
  arg->image.pad_height = (uint32_t)padding_h;
  arg->image.pad_width = (uint32_t)padding_w;
867 868 869 870 871
  arg->image.scale_address = input->scale;
  arg->output.address = output_ptr;
  arg->output.scale_address = out->scale;
}  // end dwconv arg fill

qnqinan's avatar
qnqinan 已提交
872 873
void fill_DWDeconv_arg(struct DWDeconvArgs *arg, framework::Tensor *input,
                       framework::Tensor *out, framework::Tensor *filter,
qnqinan's avatar
qnqinan 已提交
874 875 876 877
                       ActivationType activation_enable,
                       int16_t leaky_relu_negative_slope, int stride_h,
                       int stride_w, int padding_h, int padding_w,
                       float *bias_ptr) {
878 879
  auto filter_ptr = filter->data<int8_t>();
  auto input_ptr = input->data<half>();
qnqinan's avatar
qnqinan 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913

  auto deleter = [](void *p) { fpga_free(p); };

  arg->group_num = (uint32_t)filter->dims()[0];
  arg->sub_conv_num = (uint32_t)stride_w;
  arg->filter_num = (uint32_t)filter->dims()[0];

  int sub_conv_num = stride_w;

  int sub_pad =
      deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],  // NOLINT
                                         padding_w, stride_w);
  auto sub_filter_width = (uint32_t)deconv_filter::deconv_get_sub_filter_axis(
      (int)filter->dims()[3], stride_w);  // NOLINT

  auto sub_output_width = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[3], sub_pad, sub_filter_width);  // NOLINT
  auto sub_output_height = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[2], sub_pad, sub_filter_width);  // NOLINT

  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
      stride_w, (int)filter->dims()[3], padding_w);  // NOLINT

  auto sub_channels = (int)input->dims()[1];  // NOLINT
  uint32_t omit_size = arg->omit_size;
  int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
  int real_out_height = sub_output_height * sub_conv_num - 2 * omit_size;
  int sub_filter_num = sub_conv_num * (arg->filter_num);

  framework::DDim dims_out_new = framework::make_ddim(
      {1, arg->filter_num, real_out_height, real_out_width});
  fpga::format_fp16_ofm(out, dims_out_new);
914
  auto out_ptr = out->data<half>();
qnqinan's avatar
qnqinan 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932

  /*====For Addition
  arg->output.address =
      (half *)out_ptr +  // NOLINT
      omit_size * sizeof(half) *
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));
          */
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;

  int filter_offset = sub_filter_width * sub_filter_width *
                      align_to_x(sub_channels, FILTER_ELEMENT_ALIGNMENT) *
                      arg->sub_conv_num;

  for (int i = 0; i < sub_conv_num; ++i) {
    arg->dw_conv_args.push_back(std::make_shared<DWconvArgs>());

    arg->dw_conv_args[i]->sub_conv_num = sub_conv_num;
qnqinan's avatar
qnqinan 已提交
933 934 935 936
    // arg->dw_conv_args[i]->relu_enabled = relu_enabled;
    arg->dw_conv_args[i]->output.activation.activation_type = activation_enable;
    arg->dw_conv_args[i]->output.activation.leaky_relu_negative_slope =
        leaky_relu_negative_slope;
qnqinan's avatar
qnqinan 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
    arg->dw_conv_args[i]->bias_address = bias_ptr;

    arg->dw_conv_args[i]->filter_address =
        fpga_malloc(filter_offset * sizeof(int16_t));
    memcpy(arg->dw_conv_args[i]->filter_address,
           (reinterpret_cast<half *>(filter_ptr) + i * filter_offset),
           filter_offset * sizeof(int16_t));
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->dw_conv_args[i]->filter_address),
        deleter));

    arg->dw_conv_args[i]->kernel.height = (uint32_t)sub_filter_width;
    arg->dw_conv_args[i]->kernel.width = (uint32_t)sub_filter_width;

    arg->dw_conv_args[i]->kernel.stride_h = (uint32_t)1;
    arg->dw_conv_args[i]->kernel.stride_w = (uint32_t)1;
    arg->dw_conv_args[i]->image.address = input_ptr;
    arg->dw_conv_args[i]->image.channels = (uint32_t)input->dims()[1];
    arg->dw_conv_args[i]->image.height = (uint32_t)input->dims()[2];
    arg->dw_conv_args[i]->image.width = (uint32_t)input->dims()[3];

    arg->dw_conv_args[i]->image.pad_height = sub_pad;
    arg->dw_conv_args[i]->image.pad_width = sub_pad;
    arg->dw_conv_args[i]->image.scale_address = input->scale;

    arg->dw_conv_args[i]->output.address =
        fpga_malloc(sub_output_height *
                    align_to_x(sub_output_width * sub_channels * sub_conv_num,
                               IMAGE_ALIGNMENT) *
                    sizeof(int16_t));
    arg->dw_conv_args[i]->output.scale_address =
        static_cast<float *>(fpga_malloc(2 * sizeof(float)));
qnqinan's avatar
update  
qnqinan 已提交
969
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
qnqinan's avatar
qnqinan 已提交
970 971
        reinterpret_cast<char *>(arg->dw_conv_args[i]->output.address),
        deleter));
qnqinan's avatar
update  
qnqinan 已提交
972
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
qnqinan's avatar
qnqinan 已提交
973 974 975 976 977 978 979
        reinterpret_cast<char *>(arg->dw_conv_args[i]->output.scale_address),
        deleter));
  }

  // arg->output.scale_address = out->scale;
}  // end dwconv arg fill

H
hanbuhe 已提交
980
}  // namespace fpga
Z
zhangyang 已提交
981
}  // namespace paddle_mobile