api.cpp 20.5 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15 16
#include "fpga/V1/api.h"
#include "fpga/V1/bias_scale.h"
Z
zhangyang 已提交
17
#include "fpga/V1/deconv_filter.h"
Z
zhangyang 已提交
18 19
#include "fpga/V1/filter.h"
#include "fpga/V1/image.h"
Z
zhangyang 已提交
20

Z
zhangyang 已提交
21
namespace paddle_mobile {
H
hanbuhe 已提交
22 23
namespace fpga {

24 25 26
#define USE_RELU 1
#define USE_BIAS 2

Z
zhangyang 已提交
27 28
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
29
  auto channel = dims[1], height = dims[2], width = dims[3];
30
  auto data_ptr = image_tensor->data<float>();
Z
zhangyang 已提交
31
  size_t memory_size = channel * height * width * sizeof(float);
32
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
33 34 35 36 37
  fpga_copy(new_data, data_ptr, memory_size);
  image::format_image(&new_data, channel, height, width);
  image_tensor->reset_data_ptr(new_data);
}

38
void format_fp16_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
39
  auto dims = ofm_tensor->dims();
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}

void format_fp32_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
Z
zhangyang 已提交
70 71
}

Z
zhangyang 已提交
72 73 74 75
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
76 77 78

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
79 80
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
81 82 83 84
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}

85
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
86
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
87 88
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
89 90 91 92
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
93 94 95 96
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

Z
zhangyang 已提交
97 98
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
99 100
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
Z
zhangyang 已提交
101
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
102
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
103
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
104
  size_t memory_size = num * channel * height * width * sizeof(float);
105
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
106 107 108 109 110 111
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
}

Z
zhangyang 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124
void format_fc_filter(framework::Tensor *filter_tensor, float max_value) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_fc_filter(&new_data, num, channel, height, width, 1,
                           max_value);
  filter_tensor->reset_data_ptr(new_data);
}
Z
zhangyang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
void format_deconv_filter(framework::Tensor *filter_tensor, float max_value,
                          int group_num, int stride) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, data_ptr, memory_size);

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, channel, hw);

  num = dims[1];
  channel = dims[0];
  deconv_filter::deconv_format_filter(
      &new_data, (int)num, (int)channel,          // NOLINT
      (int)height,                                // NOLINT
      (int)width, group_num, max_value, stride);  // NOLINT

  framework::DDim dims_new =
      framework::make_ddim({num, channel, height, width});
  filter_tensor->Resize(dims_new);
  filter_tensor->reset_data_ptr(new_data);
}
Z
zhangyang 已提交
151

Z
zhangyang 已提交
152 153 154 155 156 157
void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}

Z
zhangyang 已提交
158 159 160 161 162 163 164 165 166
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
167
  auto ddim = framework::make_ddim({1, sum_channel, height, width});
Z
zhangyang 已提交
168 169 170 171
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
}

172 173
void expand_conv_arg(ConvArgs *arg) {
  ConvArgs args = *arg;
174 175

  auto fpga_bias_scale_len =
176 177
      align_to_x(args.filter_num / args.group_num, 8) * args.group_num;

178
  auto output_height =
179 180 181
      (args.image.height + args.image.pad_height * 2 - args.kernel.height) /
          args.kernel.stride_h +
      1;
182
  auto output_width =
183 184 185
      (args.image.width + args.image.pad_width * 2 - args.kernel.width) /
          args.kernel.stride_w +
      1;
186 187 188 189 190 191 192 193 194 195

  auto filter_per_group = args.filter_num / args.group_num;
  auto channel_per_group = args.image.channels / args.group_num;

  auto image_row_count = args.image.width * args.image.channels;
  auto image_amount_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT);
  auto image_one_pad_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT) +
                               args.image.pad_width * args.image.channels;
  auto filter_amount_all =
      align_to_x(args.kernel.height * args.kernel.width * channel_per_group,
196 197
                 FILTER_ELEMENT_ALIGNMENT);

198 199
  auto output_amount_per_row =
      align_to_x(output_width * args.filter_num, IMAGE_ALIGNMENT);
200 201 202 203

  // find the opt partition strategy
  uint64_t res_win;
  uint64_t res_fit = 0;
204
  for (res_win = 1; res_win <= output_width; res_win++) {
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    if ((align_to_x(
             (args.image.channels *
              (args.kernel.width + (res_win - 1) * args.kernel.stride_w)),
             IMAGE_ALIGNMENT) /
             16 +
         1) *
            args.kernel.height >
        2048) {
      break;
    }
  }

  if (res_win != output_width) {
    res_win -= 1;
  }

  if (((res_win % 2) != 0) && (res_win != 1)) {
    res_win = res_win - 1;
  }
  res_fit = res_win;

226 227 228
  auto block_num = (output_width + res_fit - 1) / res_fit;
  auto block_len = res_fit;
  auto block_last = output_width - res_fit * (block_num - 1);
229

230 231
  auto res_amount_per_row = output_width * args.filter_num;
  auto res_amount_per_row_pad = output_amount_per_row - res_amount_per_row;
232

233 234 235
  auto image_block_amount_per_row =
      args.kernel.stride_w * res_fit * args.image.channels;
  auto filter_pad_width_mul_channel =
236
      args.image.pad_width * args.image.channels;
237
  auto image_amount_per_row_multi_win_first =
238
      image_amount_per_row * (4 * args.kernel.stride_h - args.image.pad_height);
239
  auto image_amount_per_row_multi_win =
240 241
      image_amount_per_row * (4 * args.kernel.stride_h);

242 243
  auto image_block_num = block_num;
  auto image_block_len =
244 245 246 247 248
      align_to_x((args.image.channels *
                  (args.kernel.width + (block_len - 1) * args.kernel.stride_w)),
                 IMAGE_ALIGNMENT) /
          16 +
      1;
249
  auto image_block_len_last =
250 251 252 253 254 255
      align_to_x(
          (args.image.channels *
           (args.kernel.width + (block_last - 1) * args.kernel.stride_w)),
          IMAGE_ALIGNMENT) /
          16 +
      1;
256 257 258 259
  auto image_win_cnt = block_len;
  auto image_win_cnt_last = block_last;
  auto res_row_data_align4_pad = res_amount_per_row_pad / 8;
  auto prog_full_cnt = 2048 / (filter_amount_all / 16 * 2) - 1;
260 261 262
  if (prog_full_cnt == 1023) {
    prog_full_cnt--;
  }
263
  auto post_prog_full_cnt =
264 265 266
      (512 / (align_to_x(args.filter_num, 4) / 4 * 2) > 2)
          ? (512 / (align_to_x(args.filter_num, 4) / 4 * 2) - 2)
          : 0;
267
  auto cmd = 0UL | (args.relu_enabled ? USE_RELU : 0) | USE_BIAS;
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

  (*arg).driver.image_address_phy = vaddr_to_paddr(args.image.address);
  (*arg).driver.sb_address_phy = vaddr_to_paddr(args.sb_address);
  (*arg).driver.filter_address_phy = vaddr_to_paddr(args.filter_address);
  (*arg).driver.output_address_phy = vaddr_to_paddr(args.output.address);
  (*arg).driver.output_height = output_height;
  (*arg).driver.output_width = output_width;
  (*arg).driver.filter_per_group = filter_per_group;
  (*arg).driver.channel_per_group = channel_per_group;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.image_one_pad_per_row = image_one_pad_per_row;
  (*arg).driver.filter_amount_all = filter_amount_all;
  (*arg).driver.output_amount_per_row = output_amount_per_row;
  (*arg).driver.image_block_amount_per_row = image_block_amount_per_row;
  (*arg).driver.filter_pad_width_mul_channel = filter_pad_width_mul_channel;
  (*arg).driver.image_amount_per_row_multi_win_first =
      image_amount_per_row_multi_win_first;
  (*arg).driver.image_amount_per_row_multi_win = image_amount_per_row_multi_win;
  (*arg).driver.image_block_num = image_block_num;
  (*arg).driver.image_block_len = image_block_len;
  (*arg).driver.image_block_len_last = image_block_len_last;
  (*arg).driver.image_win_cnt = image_win_cnt;
  (*arg).driver.image_win_cnt_last = image_win_cnt_last;
  (*arg).driver.res_row_data_align4_pad = res_row_data_align4_pad;
  (*arg).driver.prog_full_cnt = prog_full_cnt;
  (*arg).driver.post_prog_full_cnt = post_prog_full_cnt;
  (*arg).driver.fpga_bias_scale_len = fpga_bias_scale_len;
  (*arg).driver.cmd = cmd;
}  // expand_conv_arg()

void expand_EW_arg(EWAddArgs *arg) {
  EWAddArgs args = *arg;
  uint64_t cmd = args.relu_enabled ? USE_RELU : 0;
  uint64_t datalen = (uint64_t)args.image0.width *
                     (uint64_t)args.image0.height *
                     (uint64_t)args.image0.channels;
  uint64_t coefficient = (uint64_t)args.const0 << 32 | (uint64_t)args.const1;
  uint64_t image0_address_phy = vaddr_to_paddr(args.image0.address);
  uint64_t image1_address_phy = vaddr_to_paddr(args.image1.address);
  uint64_t output_address_phy = vaddr_to_paddr(args.output.address);

  uint64_t image_amount_per_row =
      align_to_x((uint64_t)args.image0.width * (uint64_t)args.image0.channels,
                 IMAGE_ALIGNMENT);
  uint64_t image_image_pixel = ((uint64_t)args.image0.channels << 32) |
                               ((uint64_t)args.image0.width << 16) |
                               (uint64_t)args.image0.height;

  (*arg).driver.image0_address_phy = image0_address_phy;
  (*arg).driver.image1_address_phy = image1_address_phy;
  (*arg).driver.datalen = datalen;
  (*arg).driver.image_image_pixel = image_image_pixel;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.output_address_phy = output_address_phy;
  (*arg).driver.coefficient = coefficient;
  (*arg).driver.cmd = cmd;

}  // expand_EW_arg

Z
zhangyang 已提交
327 328 329 330
void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
                    framework::Tensor *out, framework::Tensor *filter,
                    bool relu_enabled, int group_num, int stride_h,
                    int stride_w, int padding_h, int padding_w, float *bs_ptr) {
331 332
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
333
  auto out_ptr = out->data<float>();
334 335

  arg->group_num = (uint32_t)group_num;
336 337
  // Either group_num or split_num = 1;
  arg->split_num = group_num == 1 ? (uint32_t)get_plit_num(filter) : 1;
338 339 340
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
Z
zhangyang 已提交
341
  arg->conv_arg =
342
      (ConvArgs *)fpga_malloc(arg->split_num * sizeof(ConvArgs));  // NOLINT
343 344 345 346

  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
347 348
  arg->concat_arg.height = (uint32_t)out->dims()[2];
  arg->concat_arg.width = (uint32_t)out->dims()[3];
349 350

  int n = arg->split_num;
351 352 353 354
  arg->concat_arg.images_in =
      (half **)fpga_malloc(n * sizeof(int *));  // NOLINT
  arg->concat_arg.scales_in =
      (float **)fpga_malloc(n * sizeof(float *));  // NOLINT
355
  arg->concat_arg.channel_num =
356
      (uint32_t *)fpga_malloc(n * sizeof(uint32_t));  // NOLINT
357

358 359 360
  auto channel = (int)out->dims()[1];  // NOLINT
  int filter_num_per_div = get_filter_num_per_div(filter, group_num);
  int element_num = get_aligned_filter_element_num(
361
      (int)(filter->dims()[1] * filter->dims()[2] * filter->dims()[3]));
362 363

  for (int i = 0; i < n; i++) {
Z
zhangyang 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    arg->conv_arg[i].relu_enabled = relu_enabled;
    arg->conv_arg[i].group_num = (uint32_t)group_num;
    arg->conv_arg[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_arg[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_arg[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_arg[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_arg[i].image.address = input_ptr;
    arg->conv_arg[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_arg[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_arg[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_arg[i].image.scale_address = input->scale;
    arg->conv_arg[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_arg[i].image.pad_width = (uint32_t)padding_w;
    arg->conv_arg[i].filter_scale_address = filter->scale;
    arg->conv_arg[i].filter_num = (uint32_t)(
379 380
        i == n - 1 ? channel - (n - 1) * filter_num_per_div  // NOLINT
                   : filter_num_per_div);
381

Z
zhangyang 已提交
382
    size_t filter_size =
383 384 385
        element_num *
        align_to_x(arg->conv_arg[i].filter_num, FILTER_NUM_ALIGNMENT) *
        sizeof(int8_t);
Z
zhangyang 已提交
386 387 388 389 390 391
    auto filter_head =
        &((int8_t *)filter_ptr)[i * element_num * filter_num_per_div];
    arg->conv_arg[i].filter_address = fpga_malloc(filter_size);
    memcpy(arg->conv_arg[i].filter_address, filter_head, filter_size);
    fpga_flush(arg->conv_arg[i].filter_address, filter_size);

392 393 394
    size_t bs_size = 2 *
                     align_to_x(arg->conv_arg[i].filter_num, BS_NUM_ALIGNMENT) *
                     sizeof(float);
Z
zhangyang 已提交
395 396 397 398 399
    auto bs_head = &bs_ptr[i * filter_num_per_div * 2];
    arg->conv_arg[i].sb_address = fpga_malloc(bs_size);
    memcpy(arg->conv_arg[i].sb_address, bs_head, bs_size);
    fpga_flush(arg->conv_arg[i].sb_address, bs_size);

400
    if (n > 1) {
Z
zhangyang 已提交
401
      arg->conv_arg[i].output.scale_address =
402
          (float *)fpga_malloc(2 * sizeof(float));  // NOLINT
403 404 405 406 407
      arg->conv_arg[i].output.address = fpga_malloc(
          out->dims()[2] *
          align_to_x((int)(out->dims()[3] * arg->conv_arg[i].filter_num),
                     IMAGE_ALIGNMENT) *
          sizeof(half));
408
    } else {
Z
zhangyang 已提交
409 410
      arg->conv_arg[i].output.scale_address = out->scale;
      arg->conv_arg[i].output.address = out_ptr;
411 412
    }

413
    arg->concat_arg.images_in[i] =
Z
zhangyang 已提交
414 415 416
        (half *)arg->conv_arg[i].output.address;  // NOLINT
    arg->concat_arg.scales_in[i] = arg->conv_arg[i].output.scale_address;
    arg->concat_arg.channel_num[i] = arg->conv_arg[i].filter_num;
417 418

    expand_conv_arg(&arg->conv_arg[i]);
419
  }
Z
zhangyang 已提交
420 421
  filter->reset_data_ptr(nullptr);
  fpga_free(bs_ptr);
422 423
}  // fill_split_arg

Z
zhangyang 已提交
424 425 426 427 428 429 430 431 432 433
void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
                     bool relu_enabled, int group_num, int stride_h,
                     int stride_w, int padding_h, int padding_w,
                     float *bs_ptr) {
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
  auto out_ptr = out->data<float>();

  arg->group_num = (uint32_t)group_num;
434
  arg->sub_conv_num = (uint32_t)stride_h;
Z
zhangyang 已提交
435 436
  arg->filter_num = (uint32_t)filter->dims()[0];
  int sub_conv_num = arg->sub_conv_num;
437 438 439 440
  int sub_pad = deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],
                                                   padding_w, stride_w);
  int sub_filter_width = deconv_filter::deconv_get_sub_filter_axis(
      (int)filter->dims()[3], stride_w);
441

Z
zhangyang 已提交
442
  int sub_output_width = deconv_filter::deconv_get_sub_out_axis(
443
      (int)input->dims()[3], sub_pad, sub_filter_width);
Z
zhangyang 已提交
444
  int sub_output_height = deconv_filter::deconv_get_sub_out_axis(
445
      (int)input->dims()[2], sub_pad, sub_filter_width);
Z
zhangyang 已提交
446

447 448 449 450
  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
      stride_w, (int)filter->dims()[3], padding_w);
Z
zhangyang 已提交
451 452
  arg->conv_args = (ConvArgs *)fpga_malloc(sub_conv_num * sizeof(ConvArgs));

453
  auto sub_channels = (int)input->dims()[1];
Z
zhangyang 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467
  int sub_filter_num = sub_conv_num * (arg->filter_num);

  int conv_output_size =
      (align_to_x(sub_output_width * sub_filter_num, IMAGE_ALIGNMENT)) *
      sub_output_height;

  int align_sub_filter_num = align_to_x(sub_filter_num, FILTER_NUM_ALIGNMENT);
  int align_sub_filter_count =
      align_to_x(sub_filter_width * sub_filter_width * sub_channels,
                 FILTER_ELEMENT_ALIGNMENT);
  int align_conv_sub_filter_count =
      align_sub_filter_count * align_sub_filter_num;

  for (int i = 0; i < sub_conv_num; ++i) {
468
    arg->conv_args[i].filter_num = arg->sub_conv_num * arg->filter_num;
469
    arg->conv_args[i].group_num = (uint32_t)group_num;
Z
zhangyang 已提交
470 471 472 473

    arg->conv_args[i].filter_scale_address = filter->scale;
    arg->conv_args[i].relu_enabled = relu_enabled;

474 475
    arg->conv_args[i].kernel.width = (uint32_t)sub_filter_width;
    arg->conv_args[i].kernel.height = (uint32_t)sub_filter_width;
Z
zhangyang 已提交
476 477 478 479
    arg->conv_args[i].kernel.stride_w = 1;
    arg->conv_args[i].kernel.stride_h = 1;

    arg->conv_args[i].image.scale_address = input->scale;
480
    arg->conv_args[i].image.channels = (uint32_t)sub_channels;
Z
zhangyang 已提交
481 482
    arg->conv_args[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_args[i].image.height = (uint32_t)input->dims()[2];
483 484
    arg->conv_args[i].image.pad_width = (uint32_t)sub_pad;
    arg->conv_args[i].image.pad_height = (uint32_t)sub_pad;
Z
zhangyang 已提交
485
    arg->conv_args[i].image.address = input_ptr;
486
    arg->conv_args[i].sb_address = bs_ptr;
Z
zhangyang 已提交
487

488
    auto filter_sub_space =
Z
zhangyang 已提交
489 490 491
        (char *)fpga_malloc(align_conv_sub_filter_count * sizeof(char));
    fpga_copy(filter_sub_space,
              (char *)filter_ptr + i * align_conv_sub_filter_count,
492
              (size_t)align_conv_sub_filter_count);
493
    arg->conv_args[i].filter_address = filter_sub_space;
494
    fpga_flush(filter_sub_space, (size_t)align_conv_sub_filter_count);
Z
zhangyang 已提交
495 496 497 498 499

    if (sub_conv_num == 1) {
      arg->conv_args[i].output.address = out_ptr;
      arg->conv_args[i].output.scale_address = out->scale;
    } else {
500 501
      auto ptr_output = fpga_malloc(conv_output_size * sizeof(half));
      arg->conv_args[i].output.address = ptr_output;
502
      auto ptr_output_scale = (float *)fpga_malloc(2 * sizeof(float));
Z
zhangyang 已提交
503 504
      arg->conv_args[i].output.scale_address = ptr_output_scale;
    }
505
    expand_conv_arg(&arg->conv_args[i]);
Z
zhangyang 已提交
506 507 508 509
  }

  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
510
  filter->reset_data_ptr(nullptr);
511 512
}  // fill_deconv_arg

H
hanbuhe 已提交
513
}  // namespace fpga
Z
zhangyang 已提交
514
}  // namespace paddle_mobile