/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #ifndef conv_process_hpp #define conv_process_hpp #include #include #include #include "lite/backends/fpga/KD/float16.hpp" #include "lite/backends/fpga/KD/llapi/bias_scale.h" #include "lite/backends/fpga/KD/llapi/filter.h" #include "lite/backends/fpga/KD/pe_params.hpp" #include "lite/backends/fpga/KD/tensor.hpp" #include "lite/backends/fpga/KD/tensor_util.hpp" namespace paddle { namespace zynqmp { inline int get_aligned_filter_element_num(int chw) { return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT); } inline int get_filter_num_per_div(Tensor* filter, int group_num) { auto chw = filter->shape().channel() * filter->shape().height() * filter->shape().width(); auto num = filter->shape().num(); int div_capacity = filter::calc_division_capacity(chw); return filter::calc_num_per_div(num, group_num, div_capacity); } inline int get_split_num(Tensor* filter) { auto chw = filter->shape().channel() * filter->shape().height() * filter->shape().width(); auto num = filter->shape().num(); int div_capacity = filter::calc_division_capacity(chw); // int aligned_num = align_to_x(num ,FILTER_NUM_ALIGNMENT); int filter_num_alignment = filter::get_filter_num_alignment(); int aligned_num = align_to_x(num, filter_num_alignment); return filter::calc_split_num(aligned_num, div_capacity); } inline void fill_scale_bias_const(ConvParam* param_) { int channel = param_->output->shape().channel(); Shape sb_shape(N, {channel}); float* new_scale_ptr = param_->scale()->mutableData(FP32, sb_shape); float* new_bias_ptr = param_->bias()->mutableData(FP32, sb_shape); for (int i = 0; i < channel; i++) { new_scale_ptr[i] = 1.0f; new_bias_ptr[i] = 0.0f; } param_->scale()->flush(); param_->bias()->flush(); } inline void combine_bn_params(BatchnormParam* bn, ConvParam* param_) { int channel = param_->output->shape().channel(); Shape sb_shape(N, {channel}); float* new_scale_ptr = param_->scale()->mutableData(FP32, sb_shape); float* new_bias_ptr = param_->bias()->mutableData(FP32, sb_shape); float* bn_scale_ptr = bn->scale->data(); float* bn_bias_ptr = bn->bias->data(); float* bn_var_ptr = bn->variance->data(); float* bn_mean_ptr = bn->mean->data(); float epsilon = bn->epsilon; for (int i = 0; i < channel; i++) { float new_scale = bn_scale_ptr[i] / static_cast(pow((bn_var_ptr[i] + epsilon), 0.5)); new_scale_ptr[i] = new_scale; new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i]; } } inline void combine_add_bn_params(BatchnormParam* bn, Tensor* bias, ConvParam* param_) { int channel = param_->output->shape().channel(); Shape sb_shape(N, {channel}); float* new_scale_ptr = param_->scale()->mutableData(FP32, sb_shape); float* new_bias_ptr = param_->bias()->mutableData(FP32, sb_shape); if (bn != nullptr) { float* bn_scale_ptr = bn->scale->data(); float* bn_bias_ptr = bn->bias->data(); float* bn_var_ptr = bn->variance->data(); float* bn_mean_ptr = bn->mean->data(); float epsilon = bn->epsilon; float* bias_data = bias->data(); for (int i = 0; i < channel; i++) { float new_scale = bn_scale_ptr[i] / static_cast(pow((bn_var_ptr[i] + epsilon), 0.5)); new_scale_ptr[i] = new_scale; new_bias_ptr[i] = bn_bias_ptr[i] + (bias_data[i] - bn_mean_ptr[i]) * new_scale_ptr[i]; } } else { for (int i = 0; i < channel; i++) { new_scale_ptr[i] = 1.0f; new_bias_ptr[i] = 0.0f; } } param_->scale()->flush(); param_->bias()->flush(); param_->scale()->setDataLocation(CPU); param_->bias()->setDataLocation(CPU); } inline void format_scale_bias(Tensor* scale, Tensor* bias, Tensor* filter, Tensor* scale_bias, int group) { float* scale_data = nullptr; float* bias_data = nullptr; if (scale != nullptr) { scale_data = scale->data(); } if (bias != nullptr) { bias_data = bias->data(); } int channel = filter->shape().num(); int scale_bias_len = align_to_x(channel / group, BS_NUM_ALIGNMENT) * group; int c_per_group = channel / group; int aligned_c_per_group = align_to_x(channel / group, BS_NUM_ALIGNMENT); Shape bias_scale_shape(N, {2 * scale_bias_len}); float* bs_data = scale_bias->mutableData(FP32, bias_scale_shape); float* temp_data = reinterpret_cast(fpga_malloc(2 * scale_bias_len * sizeof(float))); memset(temp_data, 0, 2 * scale_bias_len * sizeof(float)); std::vector scales; if (scale_data != nullptr) { for (int i = 0; i < channel; ++i) { scales.push_back(scale_data[i]); } for (int i = 0; i < scale_bias_len - channel; i++) { scales.push_back(1); } } else { for (int i = 0; i < scale_bias_len; i++) { scales.push_back(1); } } for (int i = 0; i < scale_bias_len; ++i) { temp_data[i + scale_bias_len] = 1; temp_data[i] = 0; } for (int g = 0; g < group; g++) { for (int c = 0; c < c_per_group; c++) { int src_index = g * c_per_group + c; int dst_index = g * aligned_c_per_group + c; float scale_value = scales[src_index]; float bias_value = bias_data == nullptr ? 0 : bias_data[src_index]; temp_data[dst_index + scale_bias_len] = scale_value; temp_data[dst_index] = bias_value; } } // int element_num_per_div = get_filter_num_per_div(filter, group); // int scale_bias_len = align_to_x(channel / group, 8) * group; bias_scale::format_bias_scale_array( &temp_data, scale_bias_len / group, scale_bias_len); memcpy(bs_data, temp_data, 2 * scale_bias_len * sizeof(float)); } inline void format_filter(Tensor* filter, Tensor* quantized_filter, int group, std::vector& scales) { // NOLINT float max_value = find_max(*filter); Shape& filter_shape = filter->shape(); int mem_size; std::vector max_values; int8_t* quantized_data = filter::format_filter(filter->data(), mem_size, filter_shape.num(), filter_shape.channel(), filter_shape.height(), filter_shape.width(), group, max_value, max_values); float mem_factor = mem_size * 1.0f / filter->shape().numel(); quantized_filter->setMemScale(mem_factor); quantized_filter->setAligned(true); int8_t* src = quantized_filter->mutableData(INT8, filter->shape()); quantized_filter->scale()[0] = max_value / 127.0f; quantized_filter->scale()[1] = 127.0f / max_value; memcpy(src, quantized_data, mem_size); quantized_filter->flush(); for (size_t i = 0; i < max_values.size(); i++) { scales.push_back(max_values[i] / max_value); } // filter->saveToFile("filter.txt"); // std::ofstream ofs; // ofs.open("quant.txt"); // for (int i = 0; i < mem_size; i++) { // float value = quantized_data[i]; // ofs << value << std::endl; // } // ofs.close(); // exit(-1); } inline void format_dw_filter(Tensor* filter, Tensor* quantized_filter, float* scale) { int num = filter->shape().num(); int height = filter->shape().height(); int width = filter->shape().width(); auto memory_size = filter->shape().memorySize(sizeof(float)); auto new_data = (float*)fpga_malloc(memory_size); // NOLINT memcpy(new_data, filter->data(), memory_size); size_t size = filter::format_dwconv_filter(&new_data, num, height, width, scale); float16* src = quantized_filter->mutableData(FP16, filter->shape()); memcpy(src, new_data, size); quantized_filter->flush(); fpga_free(new_data); } inline void format_fc_filter(Tensor* filter, Tensor* quantized_filter) { float max_value = find_max(*filter); Shape& filter_shape = filter->shape(); quantized_filter->setAligned(true); quantized_filter->mutableData(INT8, filter->shape()); quantized_filter->scale()[0] = max_value / 127.0f; quantized_filter->scale()[1] = 127.0f / max_value; size_t memory_size = filter->shape().memorySize(sizeof(float)); auto new_data = (float*)fpga_malloc(memory_size); // NOLINT memcpy(new_data, filter->data(), memory_size); int8_t* src = quantized_filter->mutableData(INT8, filter->shape()); memcpy(src, new_data, quantized_filter->shape().memorySize(sizeof(int8_t))); quantized_filter->flush(); fpga_free(new_data); } inline void split_filter_num(const ConvParam& c_param) { ConvParam& param = const_cast(c_param); Tensor* input = param.input; Tensor* out = param.output; Tensor* filter = param.filter; auto channel = out->shape().channel(); int split_num = param.groups == 1 ? get_split_num(param.filter) : 1; int filter_num_per_div = get_filter_num_per_div(filter, param.groups); auto chw = filter->shape().channel() * filter->shape().height() * filter->shape().width(); auto num = filter->shape().num(); int div_capacity = filter::calc_division_capacity(chw); int filter_num_alignment = filter::get_filter_num_alignment(); int aligned_num = align_to_x(num / param.groups, filter_num_alignment) * param.groups; // int aligned_num = align_to_x(num / param.groups ,FILTER_NUM_ALIGNMENT) * // param.groups; split_num = filter::calc_split_num(aligned_num, div_capacity); Shape& out_shape = out->shape(); for (int i = 0; i < split_num; i++) { BasicConvParam* conv_param = new BasicConvParam(); conv_param->output.setDataLocation(Device); conv_param->output.setAligned(true); int filter_num = filter->shape().num(); float16* out_address = nullptr; float* out_scale_address = nullptr; ConvArgs& args = conv_param->args; if (split_num == 1) { out_address = out->data(); out_scale_address = out->scale(); } filter_num = i == split_num - 1 ? channel - (split_num - 1) * filter_num_per_div // NOLINT : filter_num_per_div; if (split_num != 1) { Shape shape(NHWC, {1, out_shape.height(), out_shape.width(), filter_num}); out_address = conv_param->output.mutableData(FP16, shape); out_scale_address = conv_param->output.scale(); } Shape f_shape(NCHW, {filter_num, filter->shape().channel(), filter->shape().height(), filter->shape().width()}); Tensor new_filter; float* new_filter_data = new_filter.mutableData(FP32, f_shape); int filter_hwc = filter->shape().height() * filter->shape().width() * filter->shape().channel(); memcpy(new_filter_data, filter->data() + i * filter_num_per_div * filter_hwc, filter_num * filter_hwc * sizeof(float)); new_filter.flush(); conv_param->filter.mutableData(FP32, f_shape); if (param.groups != 1) { int mem_factor = 32 / filter_num_per_div; // TODO(chonwhite): change 32 to param; conv_param->filter.setMemScale(mem_factor); } std::vector v; // TODO(chonwhite): change local variable name format_filter(&new_filter, &(conv_param->filter), param.groups, v); conv_param->filter.setDataType(INT8); int sb_num = 2 * align_to_x(filter_num, BS_NUM_ALIGNMENT); Tensor scale; Tensor bias; int chnnnel_start = i * filter_num_per_div; Shape s_shape(N, {filter_num}); float* scale_data = scale.mutableData(FP32, s_shape); float* bias_data = bias.mutableData(FP32, s_shape); for (int n = 0; n < filter_num; n++) { scale_data[n] = param.scale()->data()[n + chnnnel_start] * v[n]; } for (int n = 0; n < filter_num; n++) { bias_data[n] = param.bias()->data()[n + chnnnel_start]; } Shape sb_shape(N, {sb_num}); format_scale_bias(&scale, &bias, &conv_param->filter, &conv_param->scaleBias, param.groups); // conv_param->scaleBias.saveToFile("sb.txt"); conv_param->scaleBias.flush(); float* bs_data = conv_param->scaleBias.data(); // conv_param->scaleBias.saveToFile("sb.txt"); // param.scale()->saveToFile("scale.txt"); // param.bias()->saveToFile("bias.txt"); args.group_num = param.groups; args.relu_enabled = param.relu.enabled; args.sb_address = conv_param->scaleBias.data(); args.sb_address = bs_data; args.kernel.stride_h = param.strides[1]; args.kernel.stride_w = param.strides[0]; args.kernel.height = new_filter.shape().height(); args.kernel.width = new_filter.shape().width(); args.filter_address = conv_param->filter.data(); args.filter_num = filter_num; args.filter_scale_address = conv_param->filter.scale(); args.image.address = input->data(); args.image.scale_address = input->scale(); args.image.channels = input->shape().channel(); args.image.width = input->shape().width(); args.image.height = input->shape().height(); args.image.pad_width = param.paddings[1]; args.image.pad_height = param.paddings[0]; // dilations[0] = dilations[1] ; args.dilation = param.dilations[0]; args.output.address = out_address; args.output.scale_address = out_scale_address; param.splitParams().push_back(conv_param); } } inline void split_channel(const ConvParam& c_param) { ConvParam& param = const_cast(c_param); Tensor* input = param.input; Tensor* output = param.output; input->syncToCPU(); int num = ceil(input->shape().channel() * 1.0f / 2047); int channel = input->shape().channel() / num; Shape bs_shape(N, {channel}); for (int i = 0; i < num; i++) { BasicConvParam* conv_param = new BasicConvParam(); // input && output; Shape in_shape( NCHW, {1, channel, input->shape().height(), input->shape().width()}); conv_param->input.shareDataWith(input, in_shape, channel * i); conv_param->output.mutableData(FP16, output->shape()); // filter transformation; Shape f_shape(NCHW, {param.filter->shape().num(), channel, 1, 1}); Tensor new_filter; float* dst = new_filter.mutableData(FP32, f_shape); float* src = param.filter->data() + i * channel; for (int n = 0; n < f_shape.num(); n++) { memcpy(dst, src, channel * sizeof(float)); dst += channel; src += param.filter->shape().channel(); } new_filter.flush(); std::vector scales; format_filter(&new_filter, &(conv_param->filter), param.groups, scales); Tensor bias; Tensor scale; float* bias_data = bias.mutableData(FP32, bs_shape); float* scale_data = scale.mutableData(FP32, bs_shape); for (int c = 0; c < channel; c++) { scale_data[c] = 1; bias_data[c] = param.bias()->data()[c] / num; } scale.flush(); bias.flush(); // Shape sb_shape(N, {2 * channel}); format_scale_bias(&scale, &bias, &conv_param->filter, &conv_param->scaleBias, param.groups); conv_param->scaleBias.flush(); // conv_param->scaleBias.saveToFile("sb.txt"); ConvArgs& args = conv_param->args; args.group_num = param.groups; args.relu_enabled = param.relu.enabled; args.sb_address = conv_param->scaleBias.data(); args.kernel.stride_h = param.strides[1]; args.kernel.stride_w = param.strides[0]; args.kernel.height = new_filter.shape().height(); args.kernel.width = new_filter.shape().width(); args.filter_address = conv_param->filter.data(); args.filter_num = f_shape.num(); args.filter_scale_address = conv_param->filter.scale(); args.image.address = conv_param->input.mutableData(); args.image.scale_address = conv_param->input.scale(); args.image.channels = conv_param->input.shape().channel(); args.image.width = conv_param->input.shape().width(); args.image.height = conv_param->input.shape().height(); args.image.pad_width = param.paddings[1]; args.image.pad_height = param.paddings[0]; // dilations[0] = dilations[1] args.dilation = param.dilations[0]; args.output.address = conv_param->output.mutableData(); args.output.scale_address = conv_param->output.scale(); param.splitParams().push_back(conv_param); } } inline int fill_split_arg(const ConvParam& c_param) { ConvParam& param = const_cast(c_param); Tensor* input = param.input; Tensor* output = param.output; if (output->shape().dimSize() == 4 && input->shape().channel() > 2047 && input->shape().width() == 1) { split_channel(c_param); return 1; } else { split_filter_num(c_param); return 0; } } inline bool compute_conv(const ConvParam& c_conv_params) { ConvParam& conv_params = const_cast(c_conv_params); std::vector& params = conv_params.splitParams(); int ret = 0; for (auto conv_param : params) { ret |= compute_fpga_conv_basic(conv_param->args); } size_t size = params.size(); if (ret == 0 && size > 1) { // Tensor* output = conv_params.output; Tensor& img = params[0]->output; for (int i = 0; i < 1; i++) { for (int i = 0; i < img.shape().numel(); i++) { float value = half_to_float(img.data()[i]); } } } return ret == 0; } } // namespace zynqmp } // namespace paddle #endif /* conv_process_hpp */