nearest_interp_compute_test.cc 9.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <string>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/core/tensor.h"

namespace paddle {
namespace lite {

L
liu zhengxi 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
inline std::vector<int> get_new_shape(
    const std::vector<const lite::Tensor*>& list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
    vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
  }

  return vec_new_shape;
}

template <typename T>
inline std::vector<T> get_new_data_from_tensor(const Tensor* new_data_tensor) {
  std::vector<T> vec_new_data;
  auto* new_data = new_data_tensor->data<T>();
  lite::Tensor cpu_starts_tensor;
  vec_new_data =
      std::vector<T>(new_data, new_data + new_data_tensor->dims().production());
  return vec_new_data;
}

Y
Yan Chunwei 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
template <typename dtype>
void resize_nearest_align(std::vector<const lite::Tensor*> inputs,
                          lite::Tensor* output,
                          bool with_align) {
  int hin = inputs[0]->dims()[2];
  int win = inputs[0]->dims()[3];
  int channels = inputs[0]->dims()[1];
  int num = inputs[0]->dims()[0];
  int hout = output->dims()[2];
  int wout = output->dims()[3];
  dtype scale_w = (with_align) ? (static_cast<float>(win - 1) / (wout - 1))
                               : (static_cast<float>(win) / (wout));
  dtype scale_h = (with_align) ? (static_cast<float>(hin - 1) / (hout - 1))
                               : (static_cast<float>(hin) / (hout));
  const dtype* src = inputs[0]->data<dtype>();
  dtype* dst = output->mutable_data<dtype>();
  int dst_stride_w = 1;
  int dst_stride_h = wout;
  int dst_stride_c = wout * hout;
  int dst_stride_batch = wout * hout * channels;
  int src_stride_w = 1;
  int src_stride_h = win;
  int src_stride_c = win * hin;
  int src_stride_batch = win * hin * channels;
  for (int n = 0; n < num; ++n) {
    for (int c = 0; c < channels; ++c) {
      int src_index = n * src_stride_batch + c * src_stride_c;
      for (int h = 0; h < hout; ++h) {
        for (int w = 0; w < wout; ++w) {
76 77
          int fw = (with_align) ? static_cast<int>(scale_w * w + 0.5)
                                : static_cast<int>(scale_w * w);
Y
Yan Chunwei 已提交
78
          fw = (fw < 0) ? 0 : fw;
79 80
          int fh = (with_align) ? static_cast<int>(scale_h * h + 0.5)
                                : static_cast<int>(scale_h * h);
Y
Yan Chunwei 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
          fh = (fh < 0) ? 0 : fh;
          int w_start = static_cast<int>(fw);
          int h_start = static_cast<int>(fh);
          int dst_index = n * dst_stride_batch + c * dst_stride_c +
                          h * dst_stride_h + w * dst_stride_w;
          dst[dst_index] =
              src[src_index + w_start * src_stride_w + h_start * src_stride_h];
        }
      }
    }
  }
}

class NearestInterpComputeTester : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string input0_ = "X";
L
liu zhengxi 已提交
98 99 100
  std::string sizetensor0_ = "SizeTensor0";
  std::string sizetensor1_ = "SizeTensor1";
  std::string input_scale_ = "Scale";
Y
Yan Chunwei 已提交
101 102 103 104 105 106 107 108 109 110 111 112
  std::string input1_ = "OutSize";
  std::string output_ = "Out";

  float height_scale_ = 0.0f;
  float width_scale_ = 0.0f;
  int out_height_ = -1;
  int out_width_ = -1;
  bool align_corners_ = true;
  std::string interp_method_ = "Nearest";
  DDim dims_{{2, 3}};
  DDim _dims0_{{2, 3, 3, 2}};
  DDim _dims1_{{2}};
L
liu zhengxi 已提交
113 114
  DDim sizetensor_dims_{{1}};
  DDim scale_dims_{{1}};
Y
Yan Chunwei 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

 public:
  NearestInterpComputeTester(const Place& place,
                             const std::string& alias,
                             float height_scale,
                             float width_scale,
                             int out_height,
                             int out_width,
                             bool align_corners,
                             std::string interp_method)
      : TestCase(place, alias),
        height_scale_(height_scale),
        width_scale_(width_scale),
        out_height_(out_height),
        out_width_(out_width),
        align_corners_(align_corners),
        interp_method_(interp_method) {}

  void RunBaseline(Scope* scope) override {
    width_scale_ = height_scale_;
    auto* outputs = scope->NewTensor(output_);
    CHECK(outputs);
    outputs->Resize(dims_);
    std::vector<const lite::Tensor*> inputs;
    inputs.emplace_back(scope->FindTensor(input0_));
    inputs.emplace_back(scope->FindTensor(input1_));

L
liu zhengxi 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    std::vector<const lite::Tensor*> SizeTensor(2);
    SizeTensor[0] = scope->FindTensor(sizetensor0_);
    SizeTensor[1] = scope->FindTensor(sizetensor1_);
    const lite::Tensor* input_scale = scope->FindTensor(input_scale_);

    float scale = height_scale_;
    int in_h = inputs[0]->dims()[2];
    int in_w = inputs[0]->dims()[3];
    if (SizeTensor.size() > 0) {
      auto new_size = get_new_shape(SizeTensor);
      out_height_ = new_size[0];
      out_width_ = new_size[1];
    } else {
      auto scale_tensor = input_scale;
      if (scale_tensor != nullptr) {
        auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
        scale = scale_data[0];
      }
      if (scale > 0) {
        out_height_ = static_cast<int>(in_h * scale);
        out_width_ = static_cast<int>(in_w * scale);
      }
      auto out_size = inputs[1];
      if (out_size != nullptr) {
        auto out_size_data = get_new_data_from_tensor<int>(out_size);
        out_height_ = out_size_data[0];
        out_width_ = out_size_data[1];
      }
    }
    height_scale_ = scale;
    width_scale_ = scale;

Y
Yan Chunwei 已提交
174 175 176 177
    if (out_width_ != -1 && out_height_ != -1) {
      height_scale_ = static_cast<float>(out_height_ / inputs[0]->dims()[2]);
      width_scale_ = static_cast<float>(out_width_ / inputs[0]->dims()[3]);
    }
L
liu zhengxi 已提交
178 179 180 181
    int num_cout = inputs[0]->dims()[0];
    int c_cout = inputs[0]->dims()[1];
    outputs->Resize({num_cout, c_cout, out_height_, out_width_});

Y
Yan Chunwei 已提交
182 183 184 185 186 187
    resize_nearest_align<float>(inputs, outputs, align_corners_);
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType("nearest_interp");
    op_desc->SetInput("X", {input0_});
L
liu zhengxi 已提交
188 189
    op_desc->SetInput("SizeTensor", {sizetensor0_, sizetensor1_});
    op_desc->SetInput("Scale", {input_scale_});
Y
Yan Chunwei 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    op_desc->SetInput("OutSize", {input1_});
    op_desc->SetOutput("Out", {output_});
    op_desc->SetAttr("scale", height_scale_);
    op_desc->SetAttr("out_h", out_height_);
    op_desc->SetAttr("out_w", out_width_);
    op_desc->SetAttr("align_corners", align_corners_);
    op_desc->SetAttr("interp_method", interp_method_);
  }

  void PrepareData() override {
    std::vector<float> data0(_dims0_.production());
    for (int i = 0; i < _dims0_.production(); i++) {
      data0[i] = i * 1.1;
    }

    std::vector<int> data1(_dims1_.production());
    for (int i = 0; i < _dims1_.production(); i++) {
      data1[i] = (i + 1) * 2;
    }

    SetCommonTensor(input0_, _dims0_, data0.data());
    SetCommonTensor(input1_, _dims1_, data1.data());
L
liu zhengxi 已提交
212 213 214 215 216 217 218 219 220 221 222

    std::vector<int> sizetensor_data(1);
    sizetensor_data[0] = out_height_;
    SetCommonTensor(sizetensor0_, sizetensor_dims_, sizetensor_data.data());

    sizetensor_data[0] = out_width_;
    SetCommonTensor(sizetensor1_, sizetensor_dims_, sizetensor_data.data());

    std::vector<float> scale_data(1);
    scale_data[0] = height_scale_;
    SetCommonTensor(input_scale_, scale_dims_, scale_data.data());
Y
Yan Chunwei 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
  }
};

void test_nearest_interp(Place place) {
  std::string interp_method = "Nearest";
  for (float scale : {0.123, 2., 1.2}) {
    for (int out_height : {2, 1, 6}) {
      for (int out_width : {2, 3, 5}) {
        for (bool align_corners : {true, false}) {
          std::unique_ptr<arena::TestCase> tester(
              new NearestInterpComputeTester(place,
                                             "def",
                                             scale,
                                             scale,
                                             out_height,
                                             out_width,
                                             align_corners,
                                             interp_method));
          arena::Arena arena(std::move(tester), place, 2e-5);
          arena.TestPrecision();
        }
      }
    }
  }
}

TEST(NearestInterp, precision) {
// #ifdef LITE_WITH_X86
//   Place place(TARGET(kX86));
// #endif
#ifdef LITE_WITH_ARM
  Place place(TARGET(kARM));
  test_nearest_interp(place);
#endif
}

}  // namespace lite
}  // namespace paddle