model_optimize_tool.md 8.5 KB
Newer Older
J
up  
juncaipeng 已提交
1 2 3 4 5
---
layout: post
title: 模型转化方法
---

6
Lite架构在预测过程中表现出来的高性能得益于其丰富的优化组件,其中包括量化、子图融合、混合调度、Kernel优选等等策略。为了使优化过程更加方便易用,我们提供了**opt**来自动完成优化步骤,输出一个轻量的、最优的可执行模型。具体使用方法介绍如下:
J
up  
juncaipeng 已提交
7

8
**注意**:release/v2.2.0之前的模型转化工具名称为`model_optimize_tool`,从release/v2.3.0开始模型转化工具名称修改为`opt`
H
huzhiqiang 已提交
9

10 11
## 准备opt
当前获得opt方法有三种:
J
up  
juncaipeng 已提交
12

13 14
1. 我们提供当前develop分支编译结果下载:[opt](https://paddlelite-data.bj.bcebos.com/model_optimize_tool/opt)[opt_mac](https://paddlelite-data.bj.bcebos.com/model_optimize_tool/opt_mac)
release/v2.2.0之前版本的model_optimize_tool: [model_optimize_tool](https://paddlelite-data.bj.bcebos.com/model_optimize_tool/model_optimize_tool)[model_optimize_tool_mac](https://paddlelite-data.bj.bcebos.com/model_optimize_tool/model_optimize_tool_mac)
J
up  
juncaipeng 已提交
15

16 17 18 19
2. 可以进入Paddle-Lite Github仓库的[release界面](https://github.com/PaddlePaddle/Paddle-Lite/releases),选择release版本下载对应的转化工具`opt`
   (release/v2.2.0之前的转化工具为model_optimize_tool、release/v2.3.0之后为opt)

3. 可以下载Paddle-Lite源码,从源码编译出opt工具
20 21 22 23 24 25
```bash
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
git checkout <release-version-tag>
./lite/tools/build.sh build_optimize_tool
```
26 27
编译结果位于`Paddle-Lite/build.opt/lite/api/opt`
**注意**:从源码编译opt前需要先[安装Paddle-Lite的开发环境](../source_compile)
H
huzhiqiang 已提交
28

29
## 使用opt
H
huzhiqiang 已提交
30

31
opt是x86平台上的可执行文件,需要在PC端运行:包括Linux终端和Mac终端。
H
huzhiqiang 已提交
32

33
### 帮助信息
34
 执行opt时不加入任何输入选项,会输出帮助信息,提示当前支持的选项:
35
```bash
36
 ./opt
H
huzhiqiang 已提交
37
```
38
![](https://paddlelite-data.bj.bcebos.com/doc_images/1.png)
39

40
### 功能一:转化模型为Paddle-Lite格式
41
opt可以将PaddlePaddle支持的模型转化为Paddle-Lite支持的模型格式,期间执行的操作包括:将protobuf格式的模型文件转化为naive_buffer格式的模型文件,有效降低模型体积;执行“量化、子图融合、混合调度、Kernel优选”等图优化操作,提升其在Paddle-Lite上的运行速度、内存占用等性能指标。
J
up  
juncaipeng 已提交
42

43
模型优化过程:
J
up  
juncaipeng 已提交
44

45
(1)准备待优化的PaddlePaddle模型
J
up  
juncaipeng 已提交
46

47 48
PaddlePaddle模型有两种保存格式:
   Combined Param:所有参数信息保存在单个文件`params`中,模型的拓扑信息保存在`__model__`文件中。
J
up  
juncaipeng 已提交
49

H
huzhiqiang 已提交
50
![opt_combined_model](https://paddlelite-data.bj.bcebos.com/doc_images%2Fcombined_model.png)
51 52

   Seperated Param:参数信息分开保存在多个参数文件中,模型的拓扑信息保存在`__model__`文件中。
H
huzhiqiang 已提交
53
![opt_seperated_model](https://paddlelite-data.bj.bcebos.com/doc_images%2Fseperated_model.png)
J
up  
juncaipeng 已提交
54

55
(2) 终端中执行`opt`优化模型
56
**使用示例**:转化`mobilenet_v1`模型
H
huzhiqiang 已提交
57

58
```
59
./opt --model_dir=./mobilenet_v1 --valid_targets=arm --optimize_out_type=naive_buffer --optimize_out=mobilenet_v1_opt
60
```
61
以上命令可以将`mobilenet_v1`模型转化为arm硬件平台、naive_buffer格式的Paddle_Lite支持模型,优化后的模型文件为`mobilenet_v1_opt.nb`,转化结果如下图所示:
J
up  
juncaipeng 已提交
62

63
![opt_resulted_model](https://paddlelite-data.bj.bcebos.com/doc_images/2.png)
J
up  
juncaipeng 已提交
64 65


66
(3) **更详尽的转化命令**总结:
J
up  
juncaipeng 已提交
67 68

```shell
69
./opt \
J
up  
juncaipeng 已提交
70 71 72 73 74
    --model_dir=<model_param_dir> \
    --model_file=<model_path> \
    --param_file=<param_path> \
    --optimize_out_type=(protobuf|naive_buffer) \
    --optimize_out=<output_optimize_model_dir> \
75
    --valid_targets=(arm|opencl|x86|npu|xpu) \
76 77
    --prefer_int8_kernel=(true|false) \
    --record_tailoring_info =(true|false)
J
up  
juncaipeng 已提交
78 79 80 81
```

| 选项         | 说明 |
| ------------------- | ------------------------------------------------------------ |
82 83 84
| --model_dir         | 待优化的PaddlePaddle模型(非combined形式)的路径 |
| --model_file        | 待优化的PaddlePaddle模型(combined形式)的网络结构文件路径。 |
| --param_file        | 待优化的PaddlePaddle模型(combined形式)的权重文件路径。 |
J
up  
juncaipeng 已提交
85 86
| --optimize_out_type | 输出模型类型,目前支持两种类型:protobuf和naive_buffer,其中naive_buffer是一种更轻量级的序列化/反序列化实现。若您需要在mobile端执行模型预测,请将此选项设置为naive_buffer。默认为protobuf。 |
| --optimize_out      | 优化模型的输出路径。                                         |
87
| --valid_targets     | 指定模型可执行的backend,默认为arm。目前可支持x86、arm、opencl、npu、xpu,可以同时指定多个backend(以空格分隔),Model Optimize Tool将会自动选择最佳方式。如果需要支持华为NPU(Kirin 810/990 Soc搭载的达芬奇架构NPU),应当设置为npu, arm。 |
88
| --prefer_int8_kernel | 若待优化模型为int8量化模型(如量化训练得到的量化模型),则设置该选项为true以使用int8内核函数进行推理加速,默认为false。                          |
89
| --record_tailoring_info | 当使用[根据模型裁剪库文件](../library_tailoring)功能时,则设置该选项为true,以记录优化后模型含有的kernel和OP信息,默认为false。 |
90

J
up  
juncaipeng 已提交
91 92
* 如果待优化的fluid模型是非combined形式,请设置`--model_dir`,忽略`--model_file``--param_file`
* 如果待优化的fluid模型是combined形式,请设置`--model_file``--param_file`,忽略`--model_dir`
J
up  
juncaipeng 已提交
93
* 优化后的模型包括__model__.nb和param.nb文件。
94 95 96

### 功能二:统计模型算子信息、判断是否支持

97
opt可以统计并打印出model中的算子信息、判断Paddle-Lite是否支持该模型。并可以打印出当前Paddle-Lite的算子支持情况。
98

99
(1)使用opt统计模型中算子信息
100 101 102

下面命令可以打印出mobilenet_v1模型中包含的所有算子,并判断在硬件平台`valid_targets`下Paddle-Lite是否支持该模型

103
`./opt --print_model_ops=true  --model_dir=mobilenet_v1 --valid_targets=arm`
104

105
![opt_print_modelops](https://paddlelite-data.bj.bcebos.com/doc_images/3.png)
106

107
(2)使用opt打印当前Paddle-Lite支持的算子信息
108

109
`./opt --print_all_ops=true`
110 111 112

以上命令可以打印出当前Paddle-Lite支持的所有算子信息,包括OP的数量和每个OP支持哪些硬件平台:

113
![opt_print_allops](https://paddlelite-data.bj.bcebos.com/doc_images/4.png)
114

115
`./opt ----print_supported_ops=true  --valid_targets=x86`
116

H
huzhiqiang 已提交
117
以上命令可以打印出当`valid_targets=x86`时Paddle-Lite支持的所有OP:
118

119
![opt_print_supportedops](https://paddlelite-data.bj.bcebos.com/doc_images/5.png)
120

121
## 其他功能:合并x2paddle和opt的一键脚本
122

123 124
**背景**:如果想用Paddle-Lite运行第三方来源(tensorflow、caffe、onnx)模型,一般需要经过两次转化。即使用x2paddle工具将第三方模型转化为PaddlePaddle格式,再使用opt将PaddlePaddle模型转化为Padde-Lite可支持格式。
为了简化这一过程,我们提供一键脚本,将x2paddle转化和opt转化合并:
125

H
huzhiqiang 已提交
126
**一键转化脚本**[auto_transform.sh](https://paddlelite-data.bj.bcebos.com/model_optimize_tool/auto_transform.sh)
H
huzhiqiang 已提交
127

128

129
**环境要求**:使用`auto_transform.sh`脚本转化第三方模型时,需要先安装x2paddle环境,请参考[x2paddle环境安装方法](https://github.com/PaddlePaddle/X2Paddle#环境依赖) 安装x2paddle和其环境依赖项。
130 131 132 133 134 135 136 137 138

**使用方法**

(1)打印帮助帮助信息:` ./auto_transform.sh`

(2)转化模型方法

```bash
USAGE:
139
    auto_transform.sh combines the function of x2paddle and opt, it can 
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    tranform model from tensorflow/caffe/onnx form into paddle-lite naive-buffer form.
----------------------------------------
example:
    ./auto_transform.sh --framework=tensorflow --model=tf_model.pb --optimize_out=opt_model_result
----------------------------------------
Arguments about x2paddle:
    --framework=(tensorflow|caffe|onnx);
    --model='model file for tensorflow or onnx';
    --prototxt='proto file for caffe' --weight='weight file for caffe'
 For TensorFlow:
   --framework=tensorflow --model=tf_model.pb

 For Caffe:
   --framework=caffe --prototxt=deploy.prototxt --weight=deploy.caffemodel

 For ONNX
   --framework=onnx --model=onnx_model.onnx

158
Arguments about opt:
159 160 161 162 163
    --valid_targets=(arm|opencl|x86|npu|xpu); valid targets on Paddle-Lite.
    --fluid_save_dir='path to outputed model after x2paddle'
    --optimize_out='path to outputed Paddle-Lite model'
----------------------------------------
```